

Course Designer and Acquisition Editor

Centre for Information Technology and Engineering

Manonmaniam Sundaranar University

Tirunelveli

Object Oriented Programming with C++ and Java

Contents

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

CONTENTS

Lecture 1 Introduction to Programming Language 1

 Introduction to Programming Language
 Procedure Vs Object oriented programming
 Data Abstraction
 Data Encapsulation

Lecture 2 Introduction to Object Oriented Programming 12

 Inheritance
 Polymorphism
 Advantage of Object Oriented Programming
 Advantage of C + +
 Application of C + +

Lecture 3 Introduction to Java 25

 Introduction to Java
 Advantage of Java
 Application of Java
 Java Program

Lecture 4 Data Types, Variables & Operators in C++ 31

 Basic Elements of C ++
 Variables
 Operators
 References
 Enum Types
 Anonymous Union

Lecture 5 Function, Arguments & Overloading 59

 C+ + Function & its Prototypes
 Types of Function
 Actual & Formal Arguments
 Default Argument

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

 Function Overloading
 Operator Overloading

Lecture 6 Classes & Object in C + + 83

 Classes & Object
 Access Specifies
 Inline Member Function
 Friend Function
 The ‘this’ Keyword
 Static & Non‐Static Member Function

Lecture 7 Unions, Nested Classes, Constructors & Destracters 100

 Array of Class Object
 Union & Classes
 Nested Classes
 Constructors
 Destructors

Lecture 8 Inheritance in C++ 124

 Inheritance
 Types of Inheritance
 Overriding Member Function
 Calling the Basic Methods
 Single & Multiple Inheritance

Lecture 9 Polymorphism in C++ 172

 Polymorphism
 Types of Polymorphism
 Overloading Member & Non Member Function
 Virtual & Pure Virtual Function
 Abstract Class
 Restriction On Using Abstract Classes

Lecture 10 Java Architecture 191

 Features of Java

Contents

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

 Java Development Kit (JDK)
 Java Architecture

Lecture 11 Data Types, Operators & Control Structures in Java 199

 Data Types
 Operators
 Control Structures
 Arrays
 Command Line Arguments

Lecture 12 Classes & Objects in Java 228

 Fundamental of Classes Objects
 Constructors
 The ‘this’ Keyword

Lecture 13 Inheritance in Java 236

 Basis of Inheritance
 Super & Final keyword

Lecture 14 Polymorphism in Java 249

 Dynamic Method Dispatch
 Overloading
 Abstract Classes

Lecture 15 Interfaces in Java Inner Class 260

 Inter Faces
 Define Interfaces
 Implementing Interfaces
 Partial implementation
 Variables in Interfaces

Lecture 16 Garbage Collection 277

 Garbage Collection
 Finalize Method

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

Lecture 17 Packages & Class Libraries 281

 Packages
 Defining a Packages
 Java Class Libraries
 User Defined packages

Lecture 18 Built – in‐ Classes 287

 String Buffer & String Classes
 Math Classes
 Java until Classes
 Enumeration
 Vector
 Hashtable
 Collection

Lecture 19 Exception Handling 302

 Exception Handling
 Types of Exception
 Throws, Try & Catch Blocks
 Finally clause

Lecture 20 IO Stream 325

 Introduction to Stream
 Bytes Stream & Character Stream
 Files
 Filtered Bytes Stream
 Object Serialization

Lecture 21 Applets & Application 341

 Java Applets
 Java Application
 Types of Java programs
 Java Applets

Contents

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

Lecture 22 Multithreading & Multitasking 347

 Using Multi Threading
 Multi tasking

Lecture 23 Threads 353

 Thread
 The Java Thread Model
 Creating & Thread
 Extending Thread
 Thread class and Runnable interface
 Override

Lecture 24 Thread States & Priorities 365

 Threads States
 Thread Priorities

Lecture 25 Synchronization 379

 Synchronization
 Inter‐thread Communication
 Dead Lock

Lecture 26 AWT GUI Components 395

 Introduction About AWT
 GUI Components
 Java‐AWT packages
 Event Handling

Lecture 27 Components 410

 Components
 Containers
 Events
 Layouts
 Painting & Updating
 Layout managers

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

Lecture 28 Event Listener 431

 Event Class
 Event Source
 Event Listener
 Event Listener Interfaces

Lecture 29 Controls & Events 441

 About a Widgets
 Handling Keyboard Events
 Mouse Events & Class
 Canvas

Lecture 30 Applet Versus Application 464

 Features of Applet
 Different between Applet & Application

Lecture 31 Applet Life Cycle 472

 Features of Applet
 Applet Capabilities
 Security & Restriction
 Applet Implementation

Introduction to Programming Languages

Lecture - 1

Introduction to Programming
Languages

Objectives

In this lecture you will learn the following

 Introduction to Programming Languages

 Procedure Vs Object Oriented Programming

 Data Abstraction & Encapsulation

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

1

Object Oriented Programming with C++ and Java

Coverage Plan

Lecture - 1

1.1 Snapshotu

1.2 Introduction To Programming Languages

1.3 Procedure Vs Object Oriented Programming

1.4 Data Abstraction & Encapsulation

1.5 Short Summary

1.6 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 2

Introduction to Programming Languages

1.1 Snap Shot

There is an explosion in information technology in the last few years and this will
continue in the new millennium, which has already dawned. The cause for the
bounds and leaps in information technology is the introduction of powerful
microprocessors and the Internet. The development in information technology has
changed the boundaries and the world has shrunk in its size. Hence, this era of
information technology will belong to the computer professionals who speak
through the machine.

Information cannot be defined precisely. It is related to ideas and meaning that
could be communicated, processed or converted into different forms. Moreover, the
information may be presented in different ways in different languages. So it becomes
necessary for one to understand the language otherwise the information becomes
meaningless or it may be uninformative. A computer professional who speaks to the
computer has to speak in specially designed languages that could be understood by
the computer.

 Software

As mentioned in the introduction, computers can understand only when the
information is given in a language that the computer can understand. In order to
make the man-machine communication easier the languages are developed.
Generally languages use words and statements that are normally being used in
communication. These types of languages are called the high level languages. The
information given in a high level language can be easily understood by the user,
while the machine can understand only when it is translated into binary forms like 0s
and 1s.

The translated binary form is called the low level language. A user can even give
information in the binary form, the machine language. But it is difficult to write
entire set of instructions using machine level language and assembly language. The
instructions may also be given in mnemonic codes, like ADD, MUL, STO, GO, MOV
etc. This is called the assembly language.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

3

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 4

Following table illustrates the instruction for adding two numbers

High level language Machine language* Assembly language**
 10 input a, b
 20 c = a + b
 30 write c

001xxxxxx
010xxxxxx
011xxxxxx
100xxxxxx

COP A
ADD B
STO C

STP

*In machine language the first three values indicate the type of instruction, while the
last six values give the number or address. 001-> copy the value to memory location
xxxxxxx

010 -> Add the number, 011-> store the value in memory, 100-> write the result.
** COP means copy, ADD means add, STO means store, STP means stop.

Using any language we can write software instructions. With the help of software
user can write high-level program. A program is nothing but a sequence of
instruction that will be executed one after other. Software can be classified into two
types:

1. System software
2. Application software

System software: Directly interacts with the computer system. Operating system,
compiler, interpreter are examples for this.

Application software: All the programs written by a user with the help of any
software is called as application software. Eg. Balance sheet preparation for a
company, monitoring rail way reservation process etc.,

Advantages of Computers

Computers have made a huge impact in the style of life. The question that can be
raised is how does computers benefit the world. The main advantages of using
computers are

• Speed
• Accuracy
• Diligence
Since computers work at a very fast rate, the speed plays a major role. They work at
a very fast speed such that the average time taken by a computer is somewhat
equivalent to one million mathematicians working a day. They seldom make any
errors. Since they do not control the overall functioning, they are less flexible than

Introduction to Programming Languages

humans. They have to be deliberately specified of what is going to be performed. If
an unexpected situation takes place, it does not know what to do and it either
produces error or simply come out of the task without completing it.

1.2 Introduction to Programming Languages

 The shift in programming language is categorized as following:

• Monolithic Programming
• Procedural Programming
• Structural Programming
• Object Oriented Programming

 Monolithic Programming (Assembly language and BASIC)

This programming consists only global data and sequential code. Program flow
control is achieved through the use of jump and the program code is duplicated each
time it is used. Fig 1.1 No subroutine concept is used. Since this programming style is
not supporting the concept of data abstraction it is very difficult to maintain or
enhance the program code.

 1
2
 goto 100

 goto 50

 goto 3

100

Global Data

Fig. 1.1 Monolithic Programming

Procedural Programming (FORTRAN and COBOL)

Mainly comprises of algorithms. Programs were considered as important
intermediate points between the problem and the computer in mid 1960s.
Subprograms were originally seen as lab or saving devices but very quickly
appreciated as a way to abstract program functions as shown in Fig. 1.2

The important features of Procedural Programming are

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

5

Object Oriented Programming with C++ and Java

• Programs are organized in the form of subroutines and all data items are global
• Program controls are through jumps (goto’s) and call subroutines
• Abstracted subroutines are used to avoid repetition
• Software application is minimized
• Difficult to maintain and enhance the program code

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 6

Sub-programs

GLOBAL DATA

Fig 1.2 Procedural Programming

Structured programming (Pascal and C)

Structured programming is evolved as a mechanism to address the growing issues of
programming in the large. Larger programming projects consist of large
development teams, developing different parts of the same project independently.
Fig 1.3 Programs consist of multiple and in turn each module has a set of functions
of related types.

• Structured programming is based upon the algorithm rather than data

• Programs are divided into individual modules that perform different task.

• Controls the scope of data

• Support modular programming

• Introduction of user defined data types

Technically, a structured language permits procedures and functions to be declared
inside other procedures or functions, and therefore cannot formally be called a block-
structured language. However, it is referred to as structured languages like ALGOL,
Pascal and the likes.

Introduction to Programming Languages

Structured programming allows compartmentalization of code and data. This is a
distinguishing feature of any structured language. It refers to the ability of a
language to section off and hides all information and instructions necessary to
perform a specific task from the rest of the program. Code can be compartmentalized
in C++ using functions or code blocks. Functions are used to define and code
separately, special tasks required in a program. This allows programs to be modular.
Code block is a logically connected group of program statements that is treated like a
unit

GLOBAL DATA

 Sub programs

 Module 1 Module 2 Module3
 Fig 1.3 Structured Programming

 Object Oriented Programming (C++, Smalltalk, Eiffel, Java etc.)

Approaches to programming have changed dramatically since the invention of
computer, primarily to accommodate the complexity of the programs. Object-
Oriented Programming is a new way of solving problems with computers. OOP is
designed around the data being operated upon as opposed to the operations
themselves.

The main objective of object-oriented programming is to eliminate some of the flaws
encountered in the procedural approach. The object oriented programming has taken
the best ideas of structured programming and combined them with several powerful
concepts that encourage us to approach the task of programming in a new way. An
object is a combination or collection of data and code designed to emulate a physical
or abstract entity. Each object has its own identity and is distinguishable from other
objects.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

7

Object Oriented Programming with C++ and Java

 Definition of OOP:

Object oriented programming is a programming methodology that associates data
structures with a set of operators, which act upon it.

OOP is a method of implementation in which programs are organized as co-
operative collections of objects, each of which represents an instance of some class
and whose classes are all members of a hierarchy of classes united through the
property called inheritance.

Depending on the object features supported, the languages are classified into two
categories:

• Object-Based Programming Languages

• Object-Oriented Programming Languages

Object-based programming languages support encapsulation object identity without
supporting the important features of inheritance, polymorphism and message
communications. Example ADA.

 Object-based language = +

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 8

Object-Oriented Programming Language incorporate all the features of object-based
programming languages along with inheritance and polymorphism.

Object-oriented programming language =

Encapsulation Object Identity

Object = based language + polymorphism +
 inheritance

The topology of the Object Oriented Programming is shown in Fig 1.4. The modules
represent the physical building blocks of these languages; a module is a collection of
classes and object.

Introduction to Programming Languages

 Object A Object C

 Object B

Fig 1.4 Object – Oriented Programming

Object oriented programming is a methodology that allows the association of data
structures with operations similar to the way it is perceived in the human mind.

 Features of Object-Oriented Programming

Κ Improvement of over the structured programming languages.

Κ Emphasis on data rather than algorithm

Κ Data abstraction is introduced in addition to procedural abstraction

Κ Data and associated operations are unified into a single unit, thus the objects are

grouped

Κ With common attributes, operations and semantics.

Κ Programs are designed around the data being operated, rather than operations

themselves

1.3 Procedure versus Object-Oriented Programming

Program and data are the two basic elements of any programming language. Data
plays an important role and it can exist without a program, but a program has no
relevance without data. The conventional high-level languages stress on the

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

9

Object Oriented Programming with C++ and Java

algorithms used to solve a problem. Complex procedures have been simplified by
structured programming. There are two paradigms that given how a program is
constructed. The first way is called the process-oriented model. This approach
characterizes a program as a series of linear steps. The process-oriented model can
be taught of as code acting on data. Procedural languages are also called as Function
oriented programming. (C language). The second approach is called object-oriented
programming. It organizes a program around its data and a set of well-defined
interfaces to that data. An object-oriented program can be characterized data
controlling access to code.

Function 1

Global Data Global Data Global Data Global Data

Function 2 Function 3 Function 4

 Procedural Programming

Unlike Function oriented programming, Object oriented programming emphasizes
on data rather than the algorithm. In OOP, data is compartmentalized or
encapsulated with the associated functions and this compartment is called an object.
In OO approach the problem is divide into objects, whereas in FOP the problem is
divided into functions. OOP contains FOP and so OOP can be referred to as the
super set of FOP.

OOP uses objects and not algorithms as its fundamental building blocks. Each object
is an instance of some class. Classes allow the mechanism of data abstraction for
creating new data types. Inheritance allows building of new classes from the existing
class.

Unlike traditional languages OO languages allow localization of data and code and
restrict other objects from referring to its local region. OOP is centered on the
concepts of objects, encapsulation, abstract data types, inheritance, polymorphism,
and message-based communication. An OO language views the data and its
associated set of functions as an object and treats this combination as a single entity.
Thus, an object is visualized as a combination of data and functions, which
manipulate them. During the execution of a program, the objects interact with each
other by sending messages and receiving responses.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 10

Introduction to Programming Languages

1.4 Data abstraction and encapsulation

The wrapping up of data and methods into a single unit (called class) is known as
encapsulation. Data encapsulation is the most striking feature of a class. The data is
not accessible to the outside world and only those methods, which are wrapped in
the class, can access it. These methods provide the interface between the object’s data
and the program. This insulation of the data from direct access by the program is
called data hiding. Encapsulation makes it possible for objects to be treated like
“black boxes” each performing a specific task without any concern for internal
implementation.

 Information in Information out

Data and method

Abstraction refers to the act of representing essential features without including the
background details or explanations. Classes use the concept of abstraction and are
defined as a list of abstract attributes such as size, weight and cost and methods that
operated on these attributes. They encapsulate all the essential properties of the
objects that are to be created.

1.5 Short Summary

 In Procedural Programming Programs are organized in the form of subroutines

and all data items are global.

 Structured programming allows compartmentalization of code and data. This is a

distinguishing feature of any structured language.

 An object is a combination or collection of data and code designed to emulate a

physical or abstract entity.

 OOP is a method of implementation in which programs are organized as co-

operative collections of objects, each of which represents an instance of some

class and whose classes are all members of a hierarchy of classes united through

the property called inheritance.

1.6 Brain Storm

1. Discuss the features of Object oriented programming
2. List the pros and cons of object oriented programming over the structured

programming.
3. What are the salient features of the object oriented design?
4. Illustrate the difference between system software and application software.
5. Give some examples for Object oriented programming languages.
6. How will you differentiate Data Abstraction and Encapsulation ?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

11

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 12

Lecture - 2

Introduction to OOP

Objectives

In this lecture you will learn the following

 Knowing about Inheritance & Polymorphism

 Polymorphism

 Advantages of OOP’s

 Introduction to C++

Introduction to OOP

Coverage Plan

Lecture - 2

2.1 Snap Shot

2.2 Inheritance

2.3 Polymorphism

2.4 Advantages of OOP

2.5 Introduction to C++

2.6 Advantages of C++

2.7 Applications of C++

2.8 First C++ Program

2.9 Short Summary

2.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

13

Object Oriented Programming with C++ and Java

2.1 Snap Shot

In this lecture you will learn about Inheritance, Polymorphism, Advantages of OOP,
Introduction to C++, and a sample C++ Program.

2.2 Inheritance

Inheritance is the process by which object of one class acquire the properties of
objects of another class. Inheritance supports the concept of hierarchical
classification. For example, the bird robin is a part of the class flying bird, which is
again a part of the class bird. As Illustrated in Fig2.1 the principle behind this sort of
division is that each derived class shares common characteristics with the class from
which it is derived.

In OOP, the concept of inheritance provides the idea of reusability. This means that
we can add additional features to an existing class without modifying it. This is
possible by deriving a new class from the existing one. The new class will have the
combined features of both the classes. Thus the real appeal and power of the
inheritance mechanism is that it allows the programmer to reuse a class that is
almost, but not exactly, what he wants, and to tailor the class in such a way that it
does not introduce any undesirable side effects into the rest of the classes. In Java,
the derived class is known as subclass.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 14

Bird

Attributes
Feathers
Lay eggs

Nonflyin
g Bird

Flying
Bird

Pigeon

Attributes

Crow

Attributes

Kiwi

Attributes

Ostritch

Attributes

Fig 2.1 Property of Inheritance
Example:

// Sample program for inheritance
//source file: inheritance.cpp

Introduction to OOP

class building
{
 int rooms;
 int floors;
 int areas;
 public:
 void set_rooms(int num);
 int get_rooms();
 void set_floors(int num);
 int get_floors();
 void set_area(int num);
 int get_area();
};
class house:public building // class house is the inherited class of building
{
 int bedrooms;
 int baths;
 public:
 void set_bedrooms(int num);
 int get_bedrooms();
 void set_baths(int num);
 int get_baths();
};
void building::set_rooms(int num) //function definition part
{
 rooms = num;
}
int building:: get_rooms()
{
 return rooms;
}
void building::set_floors(int num)
{
 floors = num;
}
int building::get_floor()
{
 return floors;
}
void building::set_area(int num)
{
 area = num;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

15

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 16

}
int building::get_area()
{
 return area;
}
void house::set_bedrooms(int num)
{
 bedrooms = num;
}
int house::get_bedrooms()
{
 return bedrooms;
}
void house::set_baths(int num)
{
 baths = num;
}
int house::get_baths()
{
 return baths;
}
void main()
{
 house h1;
 h1.set_rooms(10);
 h1.set_floors(5);
 h1.set_bedrooms(10);
 h1.set_baths(5);
 h1.set_area(950);
 cout<<"number of rooms"<<h1.get_rooms();
 cout<<"number of floors"<<h1.get_floors();
 cout<<"number of bedrooms"<<h1.get_bedrooms();
 cout<<"number of baths"<<h1.get_baths();
 cout<<"area of a house"<<h1.get_area();
 return 0;
}

The above example clearly states the concept of inheritance. Since class house is the
inherited class of building it can able to access the building class members(base class)
and its member functions.

Introduction to OOP

2.3 Polymorphism

Polymorphism is another important OOP concept. Polymorphism means the ability
to take more than one form. For example, an operation may exhibit different
behavior in different instances. The behaviour depends upon the types of data used
in the operation. For example, consider the operation of addition. For two numbers,
the operation will generate a sum. If the operands were strings, then the operation
would produce a third string by concatenation. Fig. 2.2 illustrates that a single
function name can be used to handle different number and different types of
arguments. This is something similar to a particular word having several different
meanings depending on the context.

 Shape

Draw()

Circle
Object

Tirangle Object

Draw (triangle)

Box Object

Draw (box)

Fig 2.2 Polymorphism

Polymorphism plays an important role in allowing objects having different internal
structures to share the same external interface. This means that a general class of
operations may be accessed in the same manner even though specific actions
associated with each operation may differ. Polymorphism is extensively used in
implementing inheritance.

Example:

//sample program for polymorphism
//source file: poly.cpp
include <iostream.h>
int abs(int I);
long abs (long l);
double abs(double d);
main()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

17

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 18

{
 cout<<abs(-10)<<"\n";
 cout<<abs(10L)<<"\n";
 cout<<abs(-12.35)<<"\n";
return 0;
}
int abs(int i)
{
 cout<<"using int method";
 return i>0?i:-i;
}
long abs(long l)
{
 cout<<"using long method";
 return l>0?l:-l;
}
double abs(double d)
{
 cout<<"using double method";
 return d>0?d:-d;
}
This example proves the concept of polymorphism, i.e, the function abs() is same, but
it acts differently in different places depending upon the argument we pass.

2.3 Advantages of OOP

• Through inheritance we can eliminate redundant code and extend the use of
existing classes.

• We can build programs from the standard working modules that communicate

with one another rather than having to start writing the code from scratch. This
leads to saving of development time and higher productivity.

• The principle of data hiding helps the programmer to build secure programs that

cannot be invaded by code in other parts of the program.

• It is possible to have multiple objects to coexist without any interference.

• It is easy to partition the work in a project based on objects.

• The data centered design approach enables us to capture more details of a model
in an implementable form.

Introduction to OOP

• Object-oriented systems can be easily upgraded from small to large systems.

• Message passing techniques for communication between objects make the

interface descriptions with external systems much simpler.

• Software complexity can be easily managed.

• Dynamic binding increases flexibility by permitting the addition of a new class of
objects without having to modify the existing code.

• Code reuse is possible in conventional languages as well, but Object Oriented

languages greatly enhance the possibility of reuse.

• Object Orientation provides many other advantages in the production and
maintenance of software; high degree of code sharing.

2.5 Introduction to C++

This lecture provides an overview of the key concepts embodied in C++. C++ is an
object-oriented programming language, and its object-oriented features are highly
interrelated. In several instances, this interrelation makes it difficult to describe one
feature of C++ without implicitly involving several others. In many places, the
object-oriented features of C++ are so intertwined that discussion of one feature
implies prior knowledge of one or more other features. To address this problem, this
lecture presents a quick overview of the most important aspects of C++.

The origin of C++

C++ is an expanded version of C. Bjarne Stroutstrup first invented the C++
extensions to C in 1980 at Bell Laboratories in Murray Hill, New Jersey. He initially
called the new language as “C with Classes”. However, in 1983 the name was
changed to C++.

Although C++’s predecessor, C, is one of the most liked and widely used
professional languages in the world, the invention of C++ was necessitated by one
major programming factor: increasing complexity. Over the years, computer
programs have become larger and more complex. Even though C is an excellent
programming language, it too has its own limits. In C, once a program exceeds from

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

19

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 20

25,000 to 100,000 lines of code, it becomes so complex that it is difficult to grasp as a
totality. The purpose of C++ is to allow this barrier to be broken. The essence of C++
is to allow the programmer to comprehend and manage larger, more complex
programs. Most additions made by Stroustrup to C support object-oriented
programming sometimes referred to as OOP.

Although C++ was initially designed to aid in the management of very large programs, it is
no way limited to this use. In fact, the object-oriented attributes of C++ can be effectively
applied to virtually any programming task. Also, because C++ shares C’s efficiency, much
high performance systems software is constructed using C++.

2.6 Advantages of C++

• Data abstraction : In OOP, the data abstraction is defined as a collection of data

and methods (functions).

• Data hiding : In C++, the class construct allows to declare data and member
functions, as a public, private and protected group. The implementation details of
a class can be hidden. This is done by the data hiding principle.

• Data encapsulation : The internal data (the member data) of a class are first

separated from the outside world(the defined class). They are then put along
with the member functions in a capsule. In other words, encapsulation groups all
the pieces of an object into one neat package. It avoids undesired side effects of
the member data when it is defined out of the class and also protects the
intentional misuse of important data. Classes efficiently manage the complexity
of large programs through encapsulation.

• Inheritance : C++ allows a programmer to build hierarchy of classes. The

derivation of classes is used for building hierarchy. The basic features of classes
(parent or base classes) can be passed onto the derived classes (child classes). In
practice, the inheritance principle reduces the amount of writing; as the derived
classes do not have to be written again.

• Polymorphism : In OOP, polymorphism is defined as how to carry out different

processing steps by a function having the same messages. Polymorphism treats
objects of related classes in a generic manner.

Introduction to OOP

2.7 Applications of C++

• Real time systems

• Simulation and modeling

• Object-oriented databases

• AI and Expert Systems

• Neural networks and parallel programming

• CAD/CIM system

2.8 First C++ Program

Welcome Program
// hello.cpp: displaying Hello World message
#include<iostream.h> //preprocessor directive statement
void main() // function declarator
{ //function block open brace
 cout<< “Welcome to C++"; // output statement
} //function block close brace

the output will be

Welcome to C++

Program Description

 C++ programs must contain a function called main(), from which execution of
program starts. The function main() is designated as the starting point of the
program execution and the user defines it. It cannot be overloaded and its syntax
type is implementation dependent. Therefore, the number of arguments and their
data-type is dependent on the compiler. Let’s have a close at a very simple C++
program which displays Hello World on the screen: -

The header file iostream.h supports streams programming features by including pre-
defined stream objects. The C++’s stream insertion operator, << sends the message
“Welcome to C++” to the pre-defined console object, count, which in turn prints on
the console.

The various components of the program hello.cpp are discussed in the following
section:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

21

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 22

Comment Line

The statement that starts with symbols // is treated as comment. Hence, the compiler
ignores the complete line starting from the // character pair.

The character .cpp in hello. tells the compiler that it is a C++ program. (However, the
extension is compiler dependent).

Preprocessor Directive

The preprocessor directive #include<iostream.h> includes all the statements of the
header file iostream.h. It contains instructions and predefined constants that will be
used in the program. It plays the same role as that of the stdio.h of C. The header file
iostream.h contains declarations that are needed by the cout and cin objects. There
are a number of such preprocessor directives provided by the C++ library, and they
have to be included depending on the built-in functions used in the program. In
effect, these directives are processed before any other executable statements in the
source file of the program by the compiler.

Function Decelerator

The third line of the program is

 void main()

The C++ program consists of a set of functions. Every C++ program must have one
function with name main, from here the execution of the program begins. The name
main is a special word (not a reserved word) and must not be invoked anywhere by
the user. The names of the functions (except main) are coined by the programmer. A
pair of parentheses, which may or may not contain arguments, follows the function
name. In this case, there are no arguments, but still the parenthesis pair is
mandatory. Every function is supposed to return a value, but the function in this
example does not return any value. Such function names must be preceded by the
reserved word void.

Compilation Process

The C++ program hello.cpp, can be entered into the system using any available text
editor. Some of the most commonly available editors are Norton editor (ne),
edline,edit,vi (most popular editor in UNIX environment). The program coded by the

Introduction to OOP

programmer is called the source code. This source code is supplied to the compiler
for converting it into the machine code.

C++ programs make use of libraries. A library contains the object code of standard
functions. The object codes of all functions used in the program have to be combined
with the program written by the programmer. In addition, some start-up code is
required to produce an executable version of the program. This process of combining
all the required object codes and the start-up is called linking and the final product is
called the executable code.

Most of the modern compilers support sophisticated features such as multiple
window editing, mouse support, on-line help, project management support, etc. One
such compiler is Borland C++. It can be invoked through command-line integrated
development environment.

Command – Line Compilation

Most of the compilers support the command line compilation of a program. All the
required arguments are passed to the compiler from the command line. For the
purpose of discussion, consider the Borland C++ compiler. (however this process is
implementation dependent.)

The command – line compiler is invoked by issuing the command:

 tcc filename.cpp (in the case of Turbo C++)

 bcc filename.cpp (in the case of Borland C++)

at the DOS prompt. It creates an object file filename.obj, and an executable file
through the explicit issue of the linking command :

 tlink filename1.obj filename2.obj <library name>

The library file can also be passed as a parameter to the linker for binding functions
defined in it. To create the executable of hello.cpp, issue the command bcc hello.cpp
at the MS-DOS prompt.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

23

Object Oriented Programming with C++ and Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 24

 2.9 Short Summary

 Inheritance is the process by which object of one class acquire the properties of
objects of another class.

 Polymorphism plays an important role in allowing objects having different

internal structures to share the same external interface

 C++ is an expanded version of C. Bjarne Stroutstrup first invented the C++
extensions to C in 1980 at Bell Laboratories in Murray Hill, New Jersey.

 C++ programs must contain a function called main(), from which execution of

program starts.

2.10 Brain Storm

1. Give an account of the concept of Inheritance.

2. Define: Polymorphism.

3. List some of the advantages of OOP

4. What are the applications and advantages of C++?

5. Write a C++ program that prints the message " This is my First CPP program".

Introduction to Java

Lecture - 3

Introduction to Java

Objectives

In this lecture you will learn the following

 Understanding the concept of Java

 Pros & Cons of Java

 Knowing the applications of Java

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

25

Object Oriented Programming with C++ and Java

Coverage Plan

Lecture - 3

3.1 Snap Shot

3.2 Introduction to Java

3.3 Advantages of Java over other programs

3.4 Applications of Java

3.5 First Java Program

3.6 Short Summary

3.7 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 26

Introduction to Java

3.1 Snap Shot

In this Lecture you will be introduced in to the Introduction of Java, its Advantages,
its Applications and finally with a Java Program.

3.2 Introduction to Java

 The history of Java

Java was developed as software for interactive TV programs and VCRs. Users could
interact with on-screen pictures, change the camera angle to their choice; choose the
time to watch programs etc. A microprocessor chip was required to be embedded in
the TV system and the software to run the programs.

James Gosling, engineer at the Sun Systems, thought of novel idea that would free
manufacturers not to be dependent on a particular brand of the chip used in the TV.
In January 1991, Bill Joy, co-founder of Sun micro system , along with James Gosling
and Patrick Naughton, provided the specifications for the software to be used for
these interactive TVs.

The highlights of the specification were that the software should be compatible with
all the existing hardware at the same time occupy as little memory space as possible.

Between February 1991 and September 1992, an operating system was developed
along those guidelines, which was called Green and a programming, language
interpreter called the Oak. But later Oak was renamed as Java in 1995.

The primary motivation for Java was the need for a platform-independent (ie.
Architecture-Neutral) language that could be used to create software to be
embedded in various consumer electronic devices, such as microwave ovens and
remote controls.

Gosling's team created a web browser, called the Hot Java using Java, that would
download Java programs nesting on the web pages and use them to animate
information on the pages.

 What is Java?

Java is simple, object-oriented, distributed, interpreted, robust, secure, architecture-
neutral, portable, high-performance, multithreaded and dynamic language.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

27

Object Oriented Programming with C++ and Java

3.3 Advantages of Java

• Java is a true object-oriented language. Almost everything in Java is an object.
All program code and data reside within objects and classes. The object model in
Java is simple and easy to extend.

• Portable: Java programs can be moved from one computer system to another
anywhere and anytime.

• Platform-Independent

• Write once, run anywhere: As java programs are compiled into machine-
independent byte codes, they run consistently on any java platform.

• Write robust and reliable programs

• Build an application on almost any platform and run that application on any
other supported platform without having to recompiling your code.

• Distribute your applications over a network in a secure fashion

3.4 Applications of Java

• Java is designed as a distributed language for creating applications on network.

• It has the ability to share both the data and programs.

• Java applications are open and access remote objects on Internet as easily as they
can do in a local system.

• It supports multithreading.

• Multithreading means handling multiple tasks simultaneously. We need not wait
for the application to finish one task before beginning another.

• Java and Internet

• Java and World Wide Web

• WWW is an open-ended information retrieval system designed to be used in the
Internet’s distributed environment. Java can be used in distributed environment.
Both Java and Web share the common technology.

3.5 First Java Program

//file name must be FirstJavaPgm.java
class FirstJavaPgm
{
 public static void main(String args[])
 {
 System.out.prinln(“Welcome to the world to Java programming”):
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 28

Introduction to Java

 Save the file as FirstJavaPgm.java
 Compile the program using javac (javac compiler JDK tool)

C:\javac FirstJavaPgm.java
 Run the program using java (java interpreter JDK tool)

C:\java FirstJavaPgm

The output is:

 Welcome to the world of java programming

Description of the above program:

The first line “//file name must be FirstJavaPgm” is a comment line. The compiler
ignores the line.
Comment line can be indicated by

 // Single line comment
 /* cl1

cl2`

cl3

cln

Multiline comment

 */
 /** …………*/ Documentation comment

 The second line class FirstJavaPgm

Declares a class, which is an object-oriented construct. “FirstJavaPgm” is user
defined class name. A java program may contain multiple class definitions. Classes
are the primary and essential element of a Java program. These classes are used to
map the objects of real world problems.

 Opening Brace
Every class definition in Java begins with an opening brace “{“ and ends with a
matching closing brace “}” appearing in the last line in the example. This indicates
the beginning and closing of any block.

 The Main Line

 public static void main(string args[])

• The main method must be declared as public, since it must be called by
outside of its class

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

29

Object Oriented Programming with C++ and Java

• The keyword static allows main() to be called without having to
instantiate a particular instance of the class. This is necessary since main()
is called by the Java interpreter before any objects are made.

• The key word void tells the compiler that main() does not return any
value.

• The argument to main() is an array of string objects. Whether the
command line arguments are used in this program or not, but they have
to be there because they hold the arguments invoked on the command
line.

 The Output line

The only essential statement in the program is

 “System.out.println(“Welcome to the world of Java programming”);

This is similar to the printf() statement of C. Since Java is a true Object oriented
programming language every method is a part of an object. The println method is a
member of the class out object, which is a static data member of System class. This
line prints the string as

Welcome to the world of Java Programming
on the screen.

3.6 Short Summary

• Java is simple, object-oriented, distributed, interpreted, robust, secure,
architecture-neutral, portable, high-performance, multithreaded and dynamic
language.

• Java is a true object-oriented language , Portable , Platform Independent .

• Java is designed as a distributed language for creating applications on network.

• It has the ability to share both the data and programs.

3.7 Brain Storm

1. Explain the advantages, application of Java programming.

2. Name the compiler and interpreter used in Java?

3. Write a Java program that prints the message "This is my First Java Program".

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 30

Variables, Operators & Data types

Lecture - 4

Variables, Operators & Data types

Objectives

In this lecture you will learn the following

 Knowing the differences between C++ and Java

 Knowing about variables shows how to passing operators

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

31

Object Oriented Programming with C++ and Java

Coverage Plan

Lecture - 4

4.1 Snap Shot

4.2 Difference between C++ & Java

4.3 Basic Elements of C++

4.4 Variables

4.5 Operators

4.6 References

4.7 Enum Types

4.8 Anonymous Union

4.9 Short Summary

4.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 32

Variables, Operators & Data types

4.1 Snap Shot

Operators to form expressions manipulate variables and constants. These are the
basic elements of the C++ language, which can be combined to form comprehensive
program components. In this topic, we will discuss the concepts of constants,
variables and their types as they relate to C++ programming language.

4.2 Differences between C++ and Java

1. Java is a true object-oriented language while C++ is basically C with object-
oriented extension.

2. Java does not support operator overloading where as C++ supports operator
overloading

3. Java does not have template classes but C++ has templates
4. Java does not support multiple inheritance, it can be achieved using "interface"

concept. C++ supports multiple inheritance.
5. No global variable declaration in Java, the variables and method declared in each

class forms part of a class. C++ accepts global declaration of variables.
6. No pointer concept is used in Java. C++ has pointer concept
7. Java does not have destructor function it has been replaced by finalize ()

function. C++ has destructor function.
8. No header file is used in Java. C++ uses header files to include all library files.

4.3 Basic Elements of C++

 Character Set

Characters are used to form the words, numbers and expressions. The characters in
C++ are grouped into the following categories: -

1 Character set alphabets from A.....Z,a....z
 all decimal digits from 0....9characters, . ; : ?

‘ “ !| / \ ~ _ $ % #& ^

* - + < > () [] { }Spaces
 blank

New Line endl
 Keywords and Identifiers

C++ word is classified as either a keyword or an identifier. All identifiers have fixed
meaning and these meanings cannot be changed. Keywords serve as the basic
building blocks for program statements. The list of all keywords is listed below. All
keywords must be written in lowercase.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

33

Object Oriented Programming with C++ and Java

auto double int struct break
else long switch case enum register
typedef char extern return union
const float short unsigned continue
for signed void default goto
sizeof volatile do if static while

Identifiers refer to the names of variables, functions and arrays. These are user -
defined names and consist of a sequence of letters and digits.

Examples of identifiers: -

Valid identifiers Invalid identifiers
Count 1count (digit, as a first letter is not allowed)
test23 hi! (Special characters except under score are

not allowed)
high_bal high balance (no spaces allowed)

Data Types
A data type defines a set of values that a variable can store along with a set of
operations that can be performed on that variable. C++ has five basic built in data
types: -.

Character (char)
Integer (int)
Floating point (float)
Double floating point (double)
Valueless (void)

Void has three uses: -.

To declare explicitly a function as returning no value.
To declare explicitly a function as having no parameters.
To create generic pointers.

C++ also supports several aggregate types including structures, unions, enumeration
and user defined types.

Type Modifiers

Excepting type void, the basic data types may have various modifiers preceding
them. A modifier is used to alter the meaning of the base type to fit the needs of
various situations more precisely. The list of modifiers is shown here: -

signed
unsigned
long
short

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 34

Variables, Operators & Data types

Modifiers can be applied to character and integer base types. However, long can also
be applied to double.

 Type Bit Width Range

char 8 -128 to 127
int 16 -32768 to 32767
unsigned int 16 0 to 65535
signed int 16 -32768 to 32767
short int 16 -32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 -32768 to 32767
long int 32 -2147483648 to 2147483647
signed long int 32 -2147483648 to 21483647
float 32 3.4E-38 to 3.4E+38
double 64 1.7E-308 to 1.7E+308
long double 64 1.7E-308 to 1.7E+308

Constants

Constants in C++ refer to fixed values that do not change during the execution of a
program. C++ supports several types of constants as shown below: -

 Numeric Constants

1. Integer Constants
2. Floating point (real) Constants

 Character Constants

1. Single Character Constants
2. String Constants

The following rules apply to all numeric constants: -, non-digit characters and blanks
cannot be included within a constant. A constant can be preceded by a minus sign.

 Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers,
namely, decimal, octal and hexadecimal.

Decimal integers consist of a set of digits from 0 through 9. The decimal integers can
be positive or negative.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

35

Object Oriented Programming with C++ and Java

Example:
1234
0
+456
-4238

Octal integers consist of any combination of digits from 0 through 7, with a leading
zero.

Example:
089
0456
0
0555

Hexadecimal integers consist of a sequence of digits 0 through 9 and alphabets from
A (a) through F (f). These integers are preceded by 0x or 0X. The letters 'A' (a)
through 'F ' (f) represent the integers 10 through 15.

Example:
0X3
0XBC
0x76f

The largest integer value that can be stored is machine dependent. It is 32767 on 16-
bit machine and 2,147,483,647 on 32_bit machine. It is also possible to store large
integer constants on these machines by appending modifiers such as U, L, UL to the
constants.

Example:
23456U(u) unsigned integer
987654321UL(ul) unsigned long integer
928374L(l) long integer

 Floating-Point Constants

Floating-point constants are represented by numbers containing fractional parts like
in 549.4545. Floating-point constants are also sometimes called as real number
constants.

Example:
0.00098
3210.67
-56.890
+345.9

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 36

Variables, Operators & Data types

A real number may also be expressed in exponential notation. For example, the value
2345.78 may be written as 23.4578e2 in exponential notation. e2 means multiply by
100. The number 3e-2 would mean 3*1/100.

Some of the valid floating - point constants are: -

0. (digit after the decimal point can be omitted)
.00045 (digit before the decimal point can be omitted)
7.31245e +3 (the notation e3 can also be written as e + 3)
2E-8 (e or E is allowed)

Some of the invalid floating - point constants are: -

12 (decimal point or an exponent must be present)
1,067.89 (comma is not allowed)
3.89e+1.5 (exponent must be an integer)
5E 12 (no embedded spaces are allowed)

Exponential notation is useful for representing numbers that are very large or very
small in magnitude. For example, 45000000000 can be written as 45e9. Similarly, -
0.000000454 is equivalent to -4.54e-7.

 Single Character Constants

A character constant is a single character enclosed within a pair of single quotes.

Example:
'A'
'3'
'?'
';'
' '

Character constants have integer values called ASCII values. For example, the
character constant '3' has an ASCII value of 83.Therefore, it is not the same as the
integer value 3. Some of the character constants and their corresponding ASCII
values are: -

 Constant ASCII value
 'a' 97
 'A' 65

 '&' 38
 ';' 59

 String Constants

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

37

Object Oriented Programming with C++ and Java

A string constant is a sequence of characters enclosed within a pair of double quotes.
The string constant may also include special characters, numbers and blank spaces.

Example:

" Hello!"
" I'm going for shopping today. Will you come?"
" 549, The Mall, Shimla."
" 4321-1234"
" O"

String constant "O" differs from the character constant 'O'. The string constant does
not have an integer value like a character constant has. A string constant is always
followed by a null character ('\0').

The following program accepts your name, address and phone number as string
constants and displays them: -

#include <iostream.h>

void main(void)
{
 cout<<" Name: Rajeev\n";
 cout<<" Address: 549, ABIDS, Hyderabad\n";
 cout<<" Contact: 040-211717\n";
}

The output is:

 Name: Rajeev
 Address: 549, ABIDS, Hyderabad
 Contact: 040-211717

Escape Sequences

Certain nonprinting characters, as well as the backslash (\) and the apostrophe ('),
can be expressed in terms of escape sequences. An escape sequence always begins
with a backward slash and is followed by one or more special characters. For
example, a newline can be referred to as \n. Such escape sequences always represent
single characters, even though they are written in terms of two or more characters.
The commonly used escape sequences are listed below: -

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 38

Variables, Operators & Data types

 Character Escape sequence

bell \a

backspace \b

horizontal tab \t

vertical tab \v

newline \n

carriage return \r

quotation mark \"

apostrophe \'

backslash \\

null \0

Escape sequences are expressed in terms of character constants: -

' \t ', ' \n ', ' \" ', ' \' ', ' \0 '

Particular interest is the escape sequence \0. This represents the null character,
which is used to signify the end of a string. Null character is not equivalent to the
character constant ' 0 '.

4.4 Variables

A variable is an identifier that is used to represent a single data item i.e. a numeric
quantity or a character constant. The data item must be assigned to the variable at
some point of time in the program. This data item can then be accessed later in the
program simply by referring to the variable name. Unlike constants that remain
unchanged during the execution of a program, a variable may take different values
at different times.

All variables must be declared before they are used in the program. The general form
of a declaration is shown as: -

Data-type var_list;

Data type must be a valid data type and var_list may consist of one or more identifier
names with comma operators. The declaration tells the compiler what the variable
names are and what type of data they hold. Some declarations are: -

int count;
short int num;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

39

Object Oriented Programming with C++ and Java

double balance;
float amount;

The words int, short int, double and float are keywords and cannot be used as
variable names.
Assigning Values to Variables

Values can be assigned to variables using the assignment operator (=): -
 var_name=expression;

An expression can be a single constant or a combination of variables, operators and
constants. The statements:

p1=3250.00;. (the expression is a single numeric constant)
p2=4570.00;
p3= p1+p2; (the expression is a sum of price1 and price2)

are called assignment statements. Every statement must have a colon at the end. A
statement implies that the value of the variable on the left of = is set to the value of
the expression on the right. Therefore,

count=count+1;

implies that the 'new value' of count (left side) has been set to the 'old value' of count
plus 1 (right side).

The variables can be assigned a value at the time of the declaration itself. This is
called initialization. The general format is: -
Data-type var_name=constant;

Example:

int value=250;
char name="Gaurav";
double amount=76.80;

Program to show declarations, assignments and initialization of various types of
variables: -

include <iostream.h>
void main(void)
{
 /*.......Declarations....... */
float a, b;
double c, d;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 40

Variables, Operators & Data types

unsigned u;
/*.......Initialization....... */
x = 19283;
int l = 9182736;
/* Assignments.......*/
a= 2345.987;
b= 1928.283647;
d= c =2.20;
u= 54637;
/*Displaying.......*/
cout<<"x ="<<x;
cout<<"l ="<<l;
cout<<"a ="<<a;
cout<<"d ="<<d;
cout<<"u ="<<"b ="<<"c =\n"<<u<<b<<c;
}

The output will be:

: x = 19283 l = 9182736 a= 2345.987000 d= 1928.283647000000 u= 54637 b=
2.200000 c = 2.200000000000

4.5 Operators

C is very rich in built-in operators. An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. There are three general
classes of operators in C: -

Arithmetic Operators
Relational and Logical Operators
Assignment Operators

In addition, C has some special operators to perform particular tasks: -

Ternary(Conditional) Operator
Sizeof Operator
Comma Operator
& Operator

 And -> Operators

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

41

Object Oriented Programming with C++ and Java

Arithmetic Operators

The table below lists the arithmetic operators provided in C++. They can be applied
to any built in data_type allowed by C++. The unary minus, in effect multiplies its
single operand by -1. Therefore, a number preceded by a minus sign changes its sign.

Operator Action Example

- Subtraction, also unary minus a- b, -a

+ Addition a + b

* Multiplication a * b

/ Division a/b

% Modulus Division a%b

-- Decrement a-- or --a ++

 Increment a++ or ++a

The modulus division (%) operation yeilds the remainder of an integer division.
However, % cannot be used on type float or double.

The following code fragment illustrates the use: -

include <iostream.h>
void main()
{

int x, y;
x=10; y=3;
cout<<x / y; /* displays 3, division of two integers*/
cout<<x % y); /* displays 1, the remainder of the integer division */
 x=1; y=2;
cout<<x / y); /* displays 0, integer division 1/2 yeilds 0 */
cout<< x % y; /* displays 1, the remainder of integer division */

}
The output is:

3 10 1

Increment and Decrement Operators

C allows two very useful operators not usually found in other languages. These are
increment and decrement operators, ++ and --. The operation ++ adds 1 to its single
operand, and -- subtracts 1. Therefore, the following are equivalent operations: -

x = x+1;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 42

Variables, Operators & Data types

is the same as
x++; or ++x;

and
x = x - 1;

is the same as
x--; or --x;

The increment and decrement operators may either precede or follow the operand.
However, there is a difference when they are used in expressions. When an
increment or decrement operator precedes its operand, C++ performs the increment
or decrement operation prior to using the operand's value. If the operator follows its
operand, C uses the value of the operand's value after incrementing or decrementing
it.

Consider the following example:

x = 10;
y = ++x;

In this case, y is set to 11.

However, if the code had been written as

x = 10;
y = x++;

y would have been set to 10. In both the cases, x is set to 11; the difference is, when it
happens.

Let's us see how different kinds of arithmetic operators can be used in a program:-

include <iostream.h>
main()
{

 int a, b, c, d, x, y, p, q;
 a=20; b=35; c= a+b; d= b-a;
cout<<"******Addition & Subraction*****";
cout<<"a = "<<"b =\n"<< a<< b;
cout<<" c = "<<"d = \n"<<c<<d;
x = b / a;
y = b % a;
cout<<"******Division & Modulus******";

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

43

Object Oriented Programming with C++ and Java

cout<<"x =\n"<<x;
cout<<"y = \n"<<y);
p=++a;
q= c + b--;
cout<<"******Increment & Decrement******";
cout<<"a = \n"<<a);
cout<<"b =\n"<<b);
cout<<"p = \n"<<p);
cout<<"q = \n"<<q);

}

The output is:

Addition & Subraction a=20 b = 35 c= 55 d = 15
Division & Modulus x= 1 y= 15
Increment & Decrement a= 21 b= 34 p= 36 q= 71

Relational and Logical Operators

In Relational Operators, the word relational refers to the relationships that the
values can have with one another. Depending on the relations, the values can be
compared. This comparison results either in true or false.

Example:
10 > 20 (false)
10 < 20 (true)

Operators like >, < used to compare values are called relational operators. C
supports six relational operators.

 The operators and their meaning is listed in the table given below: -

 Operator Meaning
< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

= = is equal to

! = is not equal

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 44

Variables, Operators & Data types

In Logical Operators, the word logical refers to the ways relationships can be
connected together using the rules of formal logic. C++ has three logical operators: -

 Operator Meaning

&& logical AND
 | | logical OR
 ! logical NOT

exp1 && exp2 evaluates to true only if both the expressions are true
x= 10; y = 12;

x < 12 && y > 10 evaluates to true since the individual expression is true

x < 5 && y = = 12 evaluates to false since the first expression is false.

exp1 || exp2 evaluates to true if either of the expression is true
x= 10; y= 12;

x > 12 || y > 10 evaluates to true since at least one expression is true

x = = 20 || y != 12 evaluates to false since neither expression is true.

 ! exp evaluates to true if its value is not equal to the expression

!x = 10 false since x is 10

!x = 12 true since x is not 12

&& and | | are used when we want to test more than one condition and make
decisions.

Example:

 a > b && c = 12

evaluates to true only if both expressions evaluate to true.
In C++, a true value is any value other than 0. A false value is 0.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

45

Object Oriented Programming with C++ and Java

Expressions using relational or logical operators return 0 for false and 1 for true.
Therefore, the following code fragment is not only true, but also prints the integer
value of true i.e. 1.

#include <iostream.h>
main()
{
 int x;
 x=100;
 cout<<(x = =100);
}

The output is : 1

Relational and Logical operators are lower in precedence than the Arithmetic
operators. This means that when arithmetic expressions are used on either side of the
relational operators, the arithmetic expression is evaluated first and then the results
are compared. For example, 10 > 1+ 12 is evaluated only after evaluating 1+12 i.e., 13.
Now, the resultant 10 > 13 is evaluated, which comes out to be false.

Assignment Operator

Assignment operator (=) is used to assign the result of an expression to a variable. It
takes the form as: -

var_name = expression;

var_name is the name if the variable which will be assigned the value of expression
by the assignment operator (=).

Example:

char name;
int x, y, z;
name = "Ashu"; /* the variable name is assigned the value,

Ashu */ x = 12; /* x is assigned the value 12 */

y = 98; /* y is assigned the value 98 */

z = x + y /* z is assigned the sum of x and y */

In addition to this, C++ has a set of 'shorthand' assignment operators of the form:

 var_name oper= expression;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 46

Variables, Operators & Data types

oper is a binary arithmetic operator. The operator oper= is called the 'shorthand'

assignment operator. The assignment statement var_name oper= expression is

equivalent to

var_name = var_name oper expression;

Example:

count = count + 1;

is equivalent to

count+ = 1;

The shorthand operator += means ' increment count by 1'.

More examples

Simple Assignment Operator Shorthand Assignment Operator
x = x + 1; x+ = 1;

 x = x - 2; x - = 2;
x = x * 12; x * = 12;
x = x / y; x / = y;

 x = x % y; x % = y;

Conditional (:?) Operator

C++ has a very powerful and convenient operator that can be used to construct
conditional expressions. It is termed as conditional operator. Sometimes, it is also
called ternary operator since it operates on three operands. The :? operator takes the
form: -

exp1 ? exp2 : exp3
exp1, exp2, exp3 are expressions.

The ternary operator works like this: -
exp1 is evaluated. If it is true, exp2 is evaluated and becomes the value of the
expression. If exp1 is false, then exp3 is evaluated and its value becomes the value of
the expression.

Example:
 x = 10;

y = x > 9 ? 100 : 200;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

47

Object Oriented Programming with C++ and Java

In this example, y will be assigned the value 100. If x had been less than or equal to
9, y would have received the value 200.
The same code, using the if-else statement is written as: -

 x =10;
 if (x > 9)
 {

 y = 100;
}
else
{
 y = 200;
}

Size of Compile-time Operator

Size of is a unary compile-time operator that returns the length of the operand, in
bytes. The operand can be a variable, a constant or a data type.

Example:

#include <iostream.h>

main()

{

 char ch;

 cout<<sizeof ch;

 cout<<sizeof(int);

}

The output is:

12

Note, to compute the size of a type, you must enclose the type name in parentheses.
This is not necessary for variable names. Size of operator is normally used to
determine the lengths of arrays and structures when their sizes are not known to the
programmer. It is also used to allocate dynamic memory to variables during
execution of the program.

Comma Operator

The comma operator is used to string together several expressions. Essentially, the
comma causes a sequence of operations to be performed. When it is used on the right
side of the assignment statement, the last expression of the comma-separated list, is
the value assigned to the expression.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 48

Variables, Operators & Data types

Example:

y= 10;
x = (y- = 5, 25 / y);

After execution, x will have the value 5 because y's original value is reduced by 5,
and then that value is divided into 25, yielding 5 as the result.

Precedence of Operators

 Table lists the precedence of all C++ operators.

Symbol Description Associatively

++ Post Increment Left to Right

-- Post Decrement Left to Right

() Function Call Left to Right

[] Array Element Reference Left to Right

�� Pointer to Structure Member Left to Right

 Structure or Union Member Left to Right

�� Pre Increment Right to Left

�� Pre Decrement Right to Left

� Logical NOT Right to Left

� Bitwise NOT Right to Left

� Unary Plus Right to Left

� Unary Minus Right to Left

� Indirection (Pointer

Reference)

Right to Left

� Address Right to Left

Sizeof() Size of an Object Right to Left

->* Pointer to member Left to Right

(type) Cast Conversion Right to Left

* Multiplication Left to Right

/ Division Left to Right

% Modulus Operator Left to Right

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

49

Object Oriented Programming with C++ and Java

+ Addition Left to Right

- Subtraction Left to Right

<< Left Shift Left to Right

>> Right Shift Left to Right

< Less Than Left to Right

<= Less Than equal To Left to Right

> Greater Than Left to Right

>= Greater Than equal to Left to Right

== Equality Left to Right

!= Inequality Left to Right

& Bitwise AND Left to Right

^ Bitwise Exclusive OR Left to Right

| Bitwise OR Left to Right

&& Logical AND Left to Right

|| Logical OR Left to Right

? Conditional expression Left to Right

, Comma operator Left to Right

=,*=,/=,%

=.+=,-

=,&=,^=,|

=,

<<=.>>=

Assignment operators Right to Left

4.6 References

C++ contains a feature that is related to the pointer. This feature is called a reference.
A reference is essentially an implicit pointer that acts as another name for an object.

Reference Parameters

One importance use for a reference is to allow you to create functions that
automatically use call-by-reference parameter passing rather than c++’s default call-
by-value.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 50

Variables, Operators & Data types

As you know, in C, to create a call-by-reference you must explicitly pass the address
of an argument to the function. For example, consider the following short program,
which uses this approach in a function called neg(), which reverses the sign of the
integer variable pointed to by its argument.

#include<iostream.h>
void neg(int *i);
main()
{
int x;
x=10;
cout << x<<”negated is “;
neg(&x);
cout <<x<<”\n”;
 return 0;
}
void neg(int *i)
{
 i = -i;
}

In this program,neg() takes as a parameter a pointer to the integer whose sign it will
reverse. Therefore, neg() is explicitly called with the address of x. Further, inside
neg() the * operator must be used to access the variable pointed to by i. As you can
automate this feature by using a reference parameter.

To create a reference parameter, precede the parameter’s name with an &. Here is
how neg() is declared using a reference:

Void neg(int &i);
This tells the compiler to make i into a reference parameter. Once this has been done,
i essentially becomes another name for whatever argument neg() is called with. That
is, i is an implicit pointer that automatically refers to the argument used in the call to
neg(). Once i has been made into a reference, it is no longer necessary (or even legal)
to apply the * operator. Instead, each time i is used, it is implicitly a reference to the
argument’s name with the & operator. Instead, the compiler does this automatically.
Here is the reference version of the preceding program:

#include<iostream.h>
void neg(int &i);
main()
{
 int x;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

51

Object Oriented Programming with C++ and Java

 x=10;
 cout << x<< “negated is “;
 neg(x);
 cout << x<<”\n”;
 return 0;
}
void neg(int &i)
{
 i= -i;
}

to review: when you create a reference parameter, that parameter automatically
refers to (implicitly points to) the argument used to call the function. Therefore, the
statement

i=-1;

actually operates on x, not on a copy of x. There is no need to apply the & operator to
an argument. Also, inside the function, the reference parameter is used directly
without the need to apply the * operator.

It is important to understand that when you assign a value to a reference, you are
actually assigning that value to the variable used in the call to the function.
Inside the function, it is not possible to change what the reference parameter is
“pointing” to. That is, a statement like

i++;
Inside neg() increments the value of the variable used in the call. It does not cause i to
point to some new location.

Here is another example. This program uses reference parameters to swap the values
of the variables it is called with.

#include<iostream.h>
void swap(int &i,int &j);
main()
{
 int a,b,c,d;
a=1;
a=2;
a=3;
d=4;
cout << “a and b “ << a << “ “ << b << “\n”;
swap(a,b);
cout <<”a and b “ <<a << “ “ << b<<”\n”;
cout << “c and d” << c<< “ “ << d << “\n;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 52

Variables, Operators & Data types

swap(c,d);
cout << “c and d:” << c<< “ “ << d << “\n”;
return 0;
}
void swap(int &i,int &j)
{
 int t;
 t=i;
 i=j;
 j=t;
}

this program displays the following:

a and b: 1 2
a and b: 2 1
c and d: 3 4
c and d: 4 3

Passing References to objects

When you pass by reference, no copy of the object is made. This means that no object
used as a parameter is destroyed when the function terminates, and the parameter’s
destructor is not called. For example, try this program:

#include<iostream.h>
class c1
{
 int id;
public:
int i;
c1(int i);
~c1();
void neg(c1 &o){0.i=-0.i;}
};
c1::c1(int num)
{
 cout <<”Constructing”<<num<<”\n”;
id=num;
}
c1::~c1()
{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

53

Object Oriented Programming with C++ and Java

 cout <<”Destructing “<<id<<”\n”;
}
main()
{
 c1 o(1);
 o.i=10;
o.neg(o);
cout <<o.i<<”\n”;
return 0;
}

here is the output of the program:

Constructing 1
-10
destructing 1

as you can see, only one call is made to c1’s destructor function. Had o been passed
by value, a second object would have been created inside neg(), and the destructor
would have been called a second time when that object was destroyed at the time
neg() terminated.

When passing parameters by reference, remember that changes to the object inside
the function affect the calling object.

Returning References

A function may return a reference. This has the rather starting effect of allowing a
function to be used on the left side of an assignment statement ! for example,
consider this simple program:

#include<iostream.h>
char & replace(int i);
char s[80]=”Hello There”;
main()
{
 replace(5)=’X’;
cout <<s;
return 0;
}
char &replace(int i)
{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 54

Variables, Operators & Data types

 return s[i];
}

this program replaces the space between hello and there with an X. That is, the
program displays helloxthere. Take a look at how this is accomplished.

As shown, replace() is declared as returning a reference to a character array. As
replace () is coded, it returns a reference to the element of s that is specified by its
argument i. The reference returned by replace () is then used in main() to assign to
that element the character X.

Restrictions to References

There are a number of restrictions that apply to references. You cannot reference
another reference. Put differently, you cannot create a pointer to a reference. You
cannot reference a bit-field.

A reference variable must be initialized when it is declared unless it is a member of a
class, a function parameter, or a return value. Null references are prohibited.

4.7 Enum types

Enumerated types work when you know in advance a finite (usually short) list of
values that a data type can take on. It is another user defined type which provides a
way for attaching names to numbers, thereby increasing comprehensibility of the
code. The enum keyword automatically enumerates a list of words by assigning
them values 0,1,2,3,4, and so on.

The general form of enum is:

 enum variable name { list of constants separated by commas };
 where enum is a keyword
 variable name is the user defined variable name
 list indicates the fixed constant values
 eg.,
 enum days_of_week {sun, mon, tue, wed, thu, fri, sat};
Once we have specified the days of the week as shown we can define variable of this
type.

Example:

// demonstration of enum data types

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

55

Object Oriented Programming with C++ and Java

include<iostream.h>
enum days_of_week {sun, mon, tue, wed, thu, fri, sat };
void main()
{
 days_of_week day1, day2,day3;
 day1 = mon;
 day 2 = fri;
 int diff = day2 - day1;
 cout<<"days between = "<<diff<<endl;
 if (day1<day2)
 cout<< "day1 comes before day2\n";
}
the values listed inside braces of enum keyword are called members. Enumerated
means that all the values are listed.

4.8 Anonymous Union

It is well known that a structure is a heterogeneous data type which allow to pack
together different types of data values as a single unit. Union is also similar to a
structure data type with a difference in the way the data is stored and retrieved. The
union stores values of different types in a single location. A union will contain one
of many different types of values.

The general form of union is

 union user_defined_name{
 member1;
 member 2;

 member n;
 };
the keyword union is used to declare the union data type. This is followed by a
user_defined_name surrounded by braces which describes the member of the union.

Example:
 union sample{
 int x;
 char s;
 float t;
 } one, two;
where one and two are the union variables similar to data size of the sample.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 56

Variables, Operators & Data types

It is possible to define a union data type without a user_defined_name or tag and this
type of declaration is called an anonymous union.
The general form is

union{
 member1;
 member2;
 __________;
 __________;
 member n;
};

The keyword union is used to declare the union data type. This is followed by braces
which describes the member of the union.

 Eg.
union{

 int x;
 float a;
 char ch;

 };

Sample program:

 #include <iostream.h>
 void main(void)
 {
 union
 {

 int x;

 float y;

 cout<<"enter the following information"<<endl;

 cout<<"x(in integer)"<<endl;

 cin>>x;

 cout<<"y(in floating)"<<endl;

 cin>>y;

 cout<<"\n content of union"<<endl;

 cout<<"x="<<x<<endl;

 cout<<"y="<<y<<endl;

 }
 the output is

 enter the following information

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

57

Object Oriented Programming with C++ and Java

 x(in integer)
 10
 y(in floating)
 34.90
 content of union
 x=10
 y=34.90

4.9 Short Summary

1. Variables are the quantities whose value may change while execution of

program

2. Constant are the quantities whose value remains the same while processing

3. Operators are used to perform some mathematical calculations.

4. Operators can also be used to give true or false value as a result of its execution.

5. Enum data type is used to denote some fixed values.

4.10 Brain Storm

1. What do identifiers mean? How is a user defined identifier different form a

standard reserved identifier?

2. What are the keywords or standard identifiers used in C++?

3. What are the different types of constants?

4. What is an operator?

5. List out the various types of operators used in C++.

6. List out the five arithmetic operators. What is the associatively rule involved in

these operators?

7. What are meant by comparison and logical operators?

8. What is a unary operator?

9. Explain the syntax of Enum type.

10. What is the purpose of anonymous union?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 58

Functions, Arguments & Overloading

Lecture - 5

Functions, Arguments &
Overloading

Objectives

In this lecture you will learn the following

 Knowing types of C++ functions

 Shows overloading types

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

59

Object Oriented Programming with C++ and Java

Coverage Plan

Lecture - 5

5.1 Snap Shot

5.2 C++ Functions and its Prototypes

5.3 Function Declaration

5.4 Types Of Functions

5.5 Actual & Formal Arguments

5.6 Default Arguments

5.7 Function Overloading

5.8 Operator Overloading

5.9 Short Summary

5.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 60

Functions, Arguments & Overloading

5.1 Snap Shot

In this lecture you will be introduced about Functions, its Prototypes, its
Declaration, Function Overloading and about Operator Overloading.

 5.2 C++ Functions and its Prototypes

A function groups a number of program statements into a unit and gives it a name.
This unit can then be invoked from other parts of the program. It is used to reduce
program size. The function's code is stored in only one place in memory, even
though the function is executed many times in the course of program.

The main advantages of using a function are:

1. easy to write a correct small function
2. easy to read, write and debug a function
3. easier to maintain or modify such a function
4. small functions tend to be itself documenting and highly readable
5. it can be called any number of times in any place with different parameters

5.3 The function declaration

The general form of function declaration is
 datatype function-name (datatype argument1, datatype aregument2
…datatype argument);
Here, datatype tells the function return data type. Function name is user defined
function name. It can be given using the rules for naming variable. Inside
parentheses argument or parameters are declared with its data type. Any number of
arguments can be given.

Example:
 void starline();

This declaration tells the compiler that at some later point we plan to present a
function called starline. The key word void specifies that the function has no return
value, and the empty parentheses indicate that it takes no arguments. The function
declaration is terminated with semicolon.
Function declarations are also called prototypes, since they provide a model or
blueprint for the function. They tell the compiler, "a function that looks like this is
coming up later in the program.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

61

Object Oriented Programming with C++ and Java

Function calling

The function is called or invoked as many time as required. To call the function we
need to give function name, followed by parentheses. The syntax of the call is very
similar to that of the declaration, except that the return type is not used. A semicolon
terminates the call. Executing function statement causes the function to execute; the
statements in the function definition are executed and then control returns to the
statement following the function call.
 Example: starline ();

 The Function Definition

The function definition contains the actual code for the function.
 Example: function definition part of void starline();
 void starline() //function declarator
 {
 for (int j = 0 ; j<=45;j++) //function body
 cout<<"*";
 cout<<endl;
 }
The function body composed of the statements that make up the function, delimited
by braces. The function declaration must use the same function name, have the same
argument types in the same order, and have the same return type. The function
declaration should not terminated with semicolon.

When the function is called the control is transferred to the first statement in the
function body. The other statements in the function body are then executed, and
when closing brace encountered, control returns to the calling program.

Sample Program:
 // source code describes the function declaration, function calling
 and function //definition
 // store the file as funct1.cpp
 # include<iostream.h>
 void main()
 {
 void display (); // function declaration
 display(); // function calling
 }
 void display () // function definition
 {
 cout<< " this is a test program \n";

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 62

Functions, Arguments & Overloading

 cout<<" for demonstrating a function call \n";
 cout<< " in C++ \n";
 }

output of the above program
 this is a test program
 for demonstrating a function call
 in C++

The main function invokes the display () function. In C++ each function is almost a
separate program. The control will be transferred from the main function or from a
function to a called function. After it has executed all the statements in the function,
the control switches back to the calling portion of the program.

Return statement

The keyword return is used to terminate function and return a value to its caller. The
return statement may also be used to exit a function without returning a value. The
return statement may or may not include an expression.

The general form of the return statement is.
 return;
 return (expression);
The return can appear anywhere within the function body. A function can also have
more than one return although it is good programming style for a function to have a
single entrance and single exit.

 Example:

 return;

 return (45);

 return (x + y);

 return (++j);

 return 0;

 return i++ // correct but not good style

The return statement terminates the execution of the function and pass on the control
back to the calling environment.

 Example:

 1. int sum (int a, int b)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

63

Object Oriented Programming with C++ and Java

 {
 return(a+b); // return integer value.
 }

 float maximum (float a, float b)
{
 if (a>b)
 return a;
 else
 return b;
}// return floating point value.

Sample program:

 //using multiple return statements in a function
 // source program name: funct2.cpp
 # include<iostream.h>
 void main (void)
 {
 float maximum(float, float, float);
 float x,y,z,max;
 cout<<" enter three numbers \n";
 cin>> x >> y >> z;
 max = maximum(x,y,z);
 cout << "maximum " << max;
 }
 float maximum (float a, float b, float c)
 {
 if (a>b)
 {
 if (a>c)
 return (a);
 else
 return (c);
 }
 else
 {

 if (b>c)
 return (b);
 else
 return (c);
 }
 }// end of function

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 64

Functions, Arguments & Overloading

 output of the above program is

 enter three numbers
 4 5 6
 maximum = 6

5.4 Types of functions

The user defined functions may be classified into three ways.

A function is invoked without passing any formal argument does not return any
value to the calling portion.

A function is invoked with formal argument and does not return any value to the
calling portion.

A function is invoked with formal argument and returns back a value to the calling
environment

Type 1: There is no data communication between the calling portion of a program
and a called function block. A calling environment invokes the function by not
passing any formal argument and the function does not return back any value to the
caller.
 Example:

 # include<iostream.h>
 void main(void)
 {
 void message (void); // function declaration
 message(); // function calling
 }
 void message (void) // function definition
 {

 }

Type 2: The second type of user defined function passes some formal arguments to a
function but the function does not return back any value to the caller. It is an one-
way data communication between a calling portion of the program and the function
block.

Example:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

65

Object Oriented Programming with C++ and Java

 # include<iostream.h>
 void main(void)
 {
 void power(int, int); //function declaration
 int x,y;

 power(x,y);
 }
 void power(int x, int y) //function calling
 {

 // body of the function
 // no value will be transferred back to the caller
 }

Sample program:

 // Passing formal arguments and no return statement
 // source name: funct3.cpp
 # include<iostream.h>
 void main(void)
 {
 void square (int); //function declaration
 int max;
 cout<< "enter a value for n \n";
 for (int i = 0; i <= max; i++)
 square(i);
 }
 void square (int n)
 {
 float value;
 value = n * n;
 cout<< "i = "<< n <<"square = "<< value<< endl;
 }
 output of the above program

 enter value for n
 2
 i= 0 square = 0

 i= 1 square = 1

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 66

Functions, Arguments & Overloading

 i= 2 square = 4

Type 3: The third type of user defined function passes some formal arguments to a
calling portion of the program and the computed value, if any, is transferred back to
the caller. Data communication between both the calling portion of a program and
the function block.

 Example:
 void main (void)
 {
 int output(int, int, char); //function declaration
 omt x, y, temp;

 temp = output(x, y, ch); // function calling
 }

 int output(int a, int b, char s) //function definition
 {
 int value;

 //body of the function
 return (something);

 }

 Sample program:
 //program to find the factorial of a given number
 // source file funct4.cpp
 # include<iostream.h>
 void main(void)
 {
 long int fact(int);
 int x, n;
 cout<<"enter any integer number"<< endl;
 cin>>n;
 x = fact(n);
 cout<<" value = " <<n << "and its factorial =";
 cout << x << endl;
 }
 long int fact(int n)
 {
 int value = 1;
 if (n = = 1)
 return (value);
 else

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

67

Object Oriented Programming with C++ and Java

 {
 for(int i= 1; i<= n; i++)
 value = value * i
 return(value);
 }
 }

output of the above program
 enter any integer number
 5
 value 5 and its factorial = 120

5.5 Actual and formal arguments

The arguments can be classified into two groups:
Actual argument
Formal argument

Actual argument: An actual argument is a variable or an expression contained in a
function call that replaces the formal parameter which is a part of the function.

 Example:
 # include <iostream.h>
 void main()
 {
 int x, y;
 void output(int x, int y); //function declaration

 output(x,y); //x and y are the actual argument
 }

Formal argument: Formal arguments are the parameters present in a function
definition which may also be called as dummy arguments or the parametric
variables. When the function is invoked, the formal parameters are replaced by the
actual parameters.

 Example:
 # include<iostream.h>
 void main(void)
 {
 int x,y;
 void output(int x, int y);

 output(x,y);
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 68

Functions, Arguments & Overloading

 void output(int a, int b) // a and b are the formal or dummy
 arguments
 {
 // body of the function definition
 }
Formal argument may be declared by the same name or by different names in calling
a portion of the program or in a called function but the data types should be the
same in both the blocks.

 Local and Global variable

The variables in general may be classified as local and global variables.

Local variable:

Variables declared inside a particular block or function is known as local variables.

 Example:
 void funct (int i, int j)
 {
 int k,n; //local variable

 // body of the function
 }

The integer variables k and n are defined within a function block of the funct(). All
the variables to be used within a function block must be either defined at the
beginning of the block itself or before using in a statement. Local variables are
referred only the particular part of a block or a function. Same variable name may be
given to different parts of a function or a block and each variable will be treated as a
different entity.

 Example:
 funct1 (float a, float b)
 {
 float x,y;
 x = 23.00;
 y = 10.9;

 }
 funct2 (int i, int j)
 {
 float x,y;
 x = 56.00;
 y = 1.90;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

69

Object Oriented Programming with C++ and Java

 }
Global variable:

Global variables are variables defined outside the main function block. These
variables are referred by the same data type and by the same name through out the
program in both the calling portion of a program and in the function block.
Whenever some of the variables are treated as constants in both the main and the
function block, it is advisable to use global variable.

 Example:

 int x,y = 4;
 void main(void)
 {
 void funct1();
 x = 10;

 funct1 ();
 }
 void funct1 ()
 {
 int sum;
 sum = x +y;
 }

 Sample program
 //global and local variable declaration
 # include<iostream.h>
 int x; //global variable
 int y = 5; //global variable
 void main (void)
 {
 x = 10;
 void sum (void);
 sum ();
 }
 void sum ()
 {
 int sum; //local variable
 sum = x + y;
 cout<< "x = " <<x<<endl;
 cout<<"y="<<y<<endl;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 70

Functions, Arguments & Overloading

 cout<<"sum = "<<sum << endl;
 }
 output of the above program

 x = 10
 y = 5
 sum = 15

Recursive function

A function which calls itself directly or indirectly again and again is known as the
recursive function. Recursive functions are very useful while constructing the data
structures like linked lists, double linked lists and trees. There is a distinct difference
between normal and recursive functions. A normal function will be invoked by the
main function whenever the function name is used. The recursive function will be
invoked by itself directly or indirectly as long as the given condition is satisfied.
For example:
 # include<iostream.h>
 {
 void main(void)
 {
 void f1 (); // function declaration

 f1 (); // function calling
 }
 void f1() // function definition
 {

 f1 (); //function calls recursively

 }

 Sample program

 # include<iostream.h>
 void main(void)
 {
 int sum(int);
 int n, temp;
 cout<<"Enter any integer number"<< endl;
 cin>>n;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

71

Object Oriented Programming with C++ and Java

 temp = sum(n);
 cout<<"value = "<<n<<"and its sum ="<< temp;
 }
 int sum (int n)
 {
 int sum (int); // local function declaration
 int value = 0;
 if (n= = 0)
 return(value);
 else
 value = n+sum(n-1);
 return (value);
 }
 out put of the above program is

 Enter an integer number
 4
 value = 4 and its sum = 10

 5.6 Default arguments

One of the useful facilities available in C++ is the facility to define default argument
values for the functions. In the function prototype declaration, the default value are
given. Whenever a call is made to a function without specifying an argument, the
program will automatically assign values to the parameters from the default function
prototype declaration. Default arguments facilitate easy development and
maintenance of programs.

Sample program:
 // default argument declaration
 # include <iostream.h>
 void sum (int a, int b, int c = 6, int d = 10); //default argument
 initialization
 void main(void)
 {
 int a,b,c,d;
 cout<<"enter any two numbers\n";
 cin>>a>>b;
 sum(a,b); //sum of default values
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 72

Functions, Arguments & Overloading

 void sum(int a1, int a2, int a3, int a4)
 {
 int temp;
 temp = a1+a2+a3+a4;
 cout<< "sum="<< temp;
 }
output of the above program

 enter any two numbers
 10 20
 sum = 46

5.7 Function Overloading

Overloading refers to the use of the same thing for different purposes. C++ also
permits overloading of functions. This means that we can use the same function
name to create functions that perform a variety of different argument tasks. This is
known as function polymorphism in OOP.

Using the concept of function overloading, we can design a family of functions with
one function name but with different argument lists. The function would perform
different operations depending on the argument list in the function call. The correct
function to be invoked is determined by checking the number and type of the
arguments but on the function type. For example, an overloaded add() function
handles different types of data as shown below :

// Declarations

int add(int a, int b);
int add(int a,int b, int c);
double add(double x,double y);
double add(int p, double q);
double add(double p,int q);

// Function calls

cout << add(5,10);
cout << add(15,10.0);
cout << add(12.5,7.5);
cout << add(5.10,15);
cout << add(0.75,5);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

73

Object Oriented Programming with C++ and Java

A function call first matches the prototype having the same number and type of
arguments and then calls the appropriate function for execution. A best match must
be unique. The function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual

arguments are the same and use that function.

2. If an exact match is not found, the compiler uses the integral promotions to the

actual arguments, such as,

Char to int
Float to double
to find a match.

3. when either of them fails, the compiler tries to use the built-in conversions (the

implicit assignment conversions) to the actual arguments and then uses the
function whose match is unique. If the conversion is possible to have multiple
matches, then the compiler will generate an error message. Suppose we use the
following two functions :

long square(long n);
double square(double x)
a function call such as square(10) will cause an error because int argument can be
converted to either long or double, thereby creating an ambiguous situation as to
which version of square () should be used.

4. if all of the steps fill, then the compiler will try the user-defined conversions in

combination with integral promotions and built-in conversions to find a unique
match. User-defined conversions are often used in handling class objects.

The following program illustrates function overloading

#include<iostream.h>

int volume(int);
double volume(double,int);
long volume(long,int,int);

main()
{
 cout << volume(10) << “\n”;
 cout << volume(2.5,8) << endl;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 74

Functions, Arguments & Overloading

 cout << volume(100L,75,15);
}
int volume(int s)
{
 return (s*s*s);
}
double volume(double r,int h)
{
 return(3.14519*r*r*h);
}
long volume(long l,int b,int h)
{
 return (1*b*h);
}

The output of program would be

 1000
 157.2595
 112500

overloading of the functions should be done with caution. We should not overload
unrelated functions and should reserve function overloading for functions that
perform closely related tasks. Sometimes, the default arguments may be used instead
of overloading. This may reduce the number of functions to be defined.

Overloaded functions are extensively used for handling class objects.

5.8 Operator Overloading

Operator overloading is one of the many exciting features of C++ language. It is an
important technique that has enhanced the power of extensibility of C++. We have
stated more than once that C++ tries to make the user-defined data types behave in
much the same way as the built-in types. For instance, C++ permits us to add two
variables of user-defined types with the same syntax that is applied to the basic type.
The mechanism of giving such special meaning to an operator is known as operator
overloading.

Operator overloading provides a flexible option for the creation of new definitions
for most of the C++ operators. We can almost create a new language of our own by

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

75

Object Oriented Programming with C++ and Java

the creative use of the function and operator overloading techniques. We can
overload all the C++ operators except the following:

1. class member access operators (.,.*)
2. scope resolution operator (::)
3. size of operator (sizeof)
4. conditional operator (?:)

the excluded operators are very few when compared to the large number of
operators, which qualify for the operator overloading definition.

Although the semantics of an operator can be extended, we cannot change its syntax,
the grammatical rules that govern its use such as the number of operands,
precedence and associatively.

For example, the multiplication operator will enjoy higher precedence than the
addition operator. Remember, when an operator is overloaded, its original meaning
is not lost. For instance, the operator +, which has been overloaded to add two
vectors, can still be used to add two integers.

 Defining Operator Overloading

To define an additional task to an operator, we must specify what it means in
relation to the class to which the operator is applied. This is done with the help of a
special function, called operator function, which describes the task. The general form
of an operator function is:

Where return type is the type of value returned by the specified operation and op is
the operator being overloaded. The op is preceded by the keyword operator .
Operator op is the function name.

Operator functions must be either member functions or friend functions. A basic
difference between them is that a friend function will have only one argument for
unary operators and two for binary operators. This is because the object used to
invoke the member function is passed implicitly and therefore is available for the
member function. This is not the case with friend functions. Arguments may be
passed either by value or by reference.

Operator functions are declared in the class using prototypes as follows:

 Vector operator+(vector);

 Vector operator –();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 76

Functions, Arguments & Overloading

 Friend vector operator+(vector,vector);

 Friend vector operator-(vector);

 Vector operator-(vector &a);

 Int operator= =(vector);

 Friend int operator = =(vector,vector)

Vector is a data type of class and may represent both magnitude and direction or a

series of points called elements

The process of overloading involves the following steps:

1. First , create a class that defines the data types that is to be used in the

overloading operation.

2. Declare the operator function operator op() in the public part of the class. It may

be either a member function or a friend function.

3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as
 Op x or x op

For unary operators and
 x op y

for binary operators.

Op x(or x op) would be interpreted as
 Operator op(x)

For friend functions, similarly, the expression x op y would be interpreted as either

 x.operatro op(y)

in case of member functions, or

 operator op(x,y)

in case of friend functions. When both the forms are declared, standard argument

matching is applied to resolve any ambiguity.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

77

Object Oriented Programming with C++ and Java

Index class with operator overloading

#include<iostream.h>
class index
{
 private:
 int value;
public:
 index()
 {
 value=0;
 }
 int getindex()
 {
 return value;
 }
 void operator ++()
 {
 value=value+1;
 }
};
void main()
{
 index idx1,idx2;
cout <<”\n Index1 = “<< idex1.getindex();
cout <<”\n Index2 = “<< idx2.getindex();
++idx1;
idx2++;
idx2++;
cout <<”\nIndex1=”<<idx1.getindex();
cout <<”\nIndex2=”<<idx2.getindex();
}

Run
Index1=0
Index2=0
Index1=1
Index2=2

In main(), the statements
++idx1;
idx2++;

Invoke the overloaded function is ++. The word operator is a keyword and is

preceded by the return type void. The operator to be overloaded is written

immediately after the keyword operator. This declaration informs the compiler to

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 78

Functions, Arguments & Overloading

invoke the overloaded function ++ whenever the unary increment operators prefixed

or post fixed to an object of the index class.

The variables idx1 and idx2 are he objects of the class index. The index value is

advanced by using statements such as ++idx1, idx++ .

Limitations of increment and decrement operators

The prefix notation causes a variable to be updated before its values is used in the

expression, whereas the postfix notation causes it to be updated after its value is

used. However, the statement

 Idx1=++idx2;

Has exactly the same effect as the statement

 Idx1=idx2++;

When ++ and – operators are overloaded, there is no distinction between the prefix

and postfix overloaded operator function. This problem is circumvented in advanced

implementations of C++, which provides additional syntax to express and

distinguish between prefix and postfix overloaded operator functions. A new syntax

to indicate postfix operator overloaded function is:

 Operator ++(int)

The program index5.cpp illustrates the invocation of prefix and postfix operator
functions.

#include<iostream.h>

class index

{

 private:

 int value;

public:

 index()

 {

 value=0;

 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

79

Object Oriented Programming with C++ and Java

 int getindex()

 {

 return value;

 }

 index operator ++()

 {

 return index (++value);

 }

 index operator ++(int)

 {

 return index(value++);

 }

};

void main()

{

 index idx1(2),idx2(2),idx3,idx4;

cout <<”\n Index1 = “<< idx1.getindex();

cout <<”\n Index2 = “<< idx2.getindex();

idx3=idx1++;

idx4=++idx2;

idx2++;

cout <<”\nIndex1=”<<idx1.getindex();

cout <<”\nIndex2=”<<idx2.getindex();

cout <<”\nIndex3=”<<idx3.getindex();

cout <<”\nIndex4=”<<idx4.getindex();

}

Run

Index1=2

Index2=2

Index1=3

Index2=2

Index1=3

Index1=3

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 80

Functions, Arguments & Overloading

In the postfix operator ++(int) function, first a nameless object with the old index

value is created and then, the index value is updated to achieve the intended

operation. The compiler will just make a call to this function for postfix operation,

but the responsibility of achieving this test on the programmer.

 Binary operator overloading

The syntax of binary operator overloading is

 Function returntype : primitive,void, or userdefined

Returntype operator operator symbol (arg)
{
 body of operator function
}

the binary overloaded operator function takes the first as an implicit operand and the

second operand must be passed explicitly. This data members of the first object are

accessed without using the dot operator whereas, the second argument members can

be accessed using the dot operator if the argument is an object. Otherwise it can be

accessed directly. Note that, the overloaded binary operator function is a member

function defined in the first object’s class.

5.9 Short Summary

 The function is called or invoked as many time as required. To call the function
we need to give function name , followed by parentheses.

 The keyword return is used to terminate function and return a value to its caller.

 Variables declared inside a particular block or function are known as local

variables.

 Function Overloading is nothing but same function name that perform a variety
of different argument tasks.

 The process of overloading involves the following steps:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

81

Object Oriented Programming with C++ and Java

 First , create a class that defines the data types that is to be used in the
overloading operation.

 Declare the operator function operator op() in the public part of the class. It may

be either a member function or a friend function.

 Define the operator function to implement the required operations.

5.10 Brain Storm

1. Explain function and its type

2. What is the purpose of return statement in a function?

3. What is meant by the function arguments, function call and return values?

4. List out the rules normally governing the use of return statement.

5. What is a recursive function?

6. List out the merits and demerits of the functions?

7. How is a recursive function different from an ordinary function?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 82

Class & Objects

Lecture - 6

Classes & Objects

Objectives

In this lecture you will learn the following

 About Classes and Objects

 Access Specifiers

 Member Functions

 The ‘this’ keyword

 Static and non-static member function

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

83

Object Oriented Programming with C++ and Java

Lecture - 6

6.1 Snap Shot

6.2 Classes

6.3 Access Specifiers

6.4 Class Objects

6.5 Inline Member Function

6.6 Friend Functions

6.7 The This Keyword

6.8 Static Class Member

6.9 Short Summary

6.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 84

Class & Objects

6.1 Snap Shot

In this Lecture you will learn about Classes, Objects, Various Member Function,
Friend Function and also you will know the use of the ‘this’ keyword.

6.2 Classes

In C++, the class forms the basis of object-oriented programming. Specifically, it is
the class that is used to define the nature of an object. In fact, the class is C++’s basic
unit of encapsulation. In this lecture, classes and objects are examined in detail.

Classes are created using the keyword class. A class declaration defines a new type
that links code and data. This new type is then used to declare objects of that class.
Thus, a class is a logical abstraction, but an object has physical existence. In other
words, an object is an instance of a class.

A class declaration is similar syntactically to a structure. Here, is the entire general
form of a class declaration that does not inherit any other class.

Class class-name
 {
 private data and functions

 access-specifier:

 data and functions

 access-specifier:

 data and functions

 .

 .

 .

 access-specifier:

 data and functions

 }object-list;

The object-list is optional. If present, it declares objects of the class.

6.3 Access specifier

 Access-specifier is one of these three c++ keywords:

1. Public

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

85

Object Oriented Programming with C++ and Java

2. Private
3. Protected

By default, functions and data declared within a class are private to that class and
may be accessed only by other members of the class. However, by using public
access specifier, you allow functions or data to be accessible to other parts of your
program. Once an access specifier has been used, it remains in effect until either
another access specifier is encountered or the end of the class declartion is reached.
To switch back to private declarations, you can use the private access specifier. The
protected access specifier is needed only when inheritance is involved.

Generally, a class specification has two parts:

A class declaration, which describes the data component in terms of data members,
and the public interface, in terms of member functions

The class method definitions, which describes how certain class member functions
are implemented

Roughly speaking, the class declaration provides a class overview, whereas the
method definitions supply the details.

The class specifies the type and scope of its member. The keyword class indicates
that the name, which follows (ClassName), is an abstract data type. The body of a
class is enclosed within the curly braces followed by a semicolon – the end of a class
specification. The body of a class contains declaration of variables and functions,
collectively known as members. The variables declared inside a class grouped under
two sections, private and public, which define the visibility of members.

The private members are accessible only to their own class’s members. On the other
hand, public members are not only accessible to their own members, but also from
outside the class. The members in the beginning of class without any access specifier
are private by default. Hence, the first use of the keyword private in a class is
optional. A class, which is totally private, is hidden from the external world and will
not serve any useful purpose.

The following declaration illustrates the specification of a class called student having
roll_no and name as its data members:

Class student

{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 86

Class & Objects

 int roll_no;
 char name[20];
 public :
 void setdata(int roll_no_in,char *name_in)

{
 roll_no=roll_no_in;
 strcpy(name,name_in);
 }
 void outdata()

{
 cout << “Roll No = “ << roll_no<<endl;
 cout << “Name = “ << name << endl;
}
};

A class should be given some meaningful name, (for instance, student) reflecting the
information it holds. The class name student becomes a new data type identifier,
which satisfies the properties of abstraction; it can be used to define instances of class
data type. The class student contains two data members and two member functions.
The data members are private by default while both the member functions are
specified as public. The member function setdata() can be used to assign values to
the data members roll_no and name. The member function outdata() can be used for
displaying the value of data members. The data members of the class student cannot
be accessed by any other function except member functions of the student class. It is
a general practice to declare data member as private and member function as public.

6.4 Class Objects

A class specification only declares the structure of objects and it must be instantiated
in order to make use of the services provided by it. This process of creating objects
(variables) of the class is called class instantiation. It is the definition of an object that
actually creates objects in the program by setting aside memory space for its storage.
Hence, a class is like a blueprint of a house and it indicates how the data and
functions are used when the class is instantiated. The necessary resources are
allocated only when a class is instantiated. The syntax for defining objects of a class is
class classname objectname,...; . Note that the keyword class is optional.

 Accessing a Class Members

Once an object of a class has been created, there must be a provision to access its
members. This is achieved by using the member access operator, dot(.). the syntax for
accessing members (data and functions) of a class is shown below

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

87

Object Oriented Programming with C++ and Java

 Objectname . datamember

 Objectname . functionname(actual arguments)

If a member to be accessed is a function, then a pair of parentheses is to be added
following the function name. The following statements access member functions of
the object s1, which is an instance of the student class:

 S1.setdata(10,”Rajkumar”);
 S1.outdata();

The program student.cpp illustrates the declaration of the class student with the
operations on its objects.

// student.cpp: member functions defined inside the body of the student class
#include <iostream.h>
#include<string.h>
class student
{
 private:
 int roll_no; // roll number
 char name[20]; // name of a student
 public :
 // initializing data members

 void setdata(int roll_no_in,char *name_in)
 {
 roll_no = roll_no_in;
 strcpy(name,name_in);
 }

 // display data members on the console screen

 void outdata()
 {
 cout << “Roll No = “ << roll_no <<endl;
 cout << “Name =” << name << endl;
 }
};
void main()
{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 88

Class & Objects

 student s1; // first object / variable of class student
 student s2; // second object / variable of class student
 s1.setdata(1,”Tejaswi”); // object s1 calls member setdata()
 s2.setdata(10,”Rajkumar”); // object s2 calls member setdata()
 cout << “Student details ...” << endl;
 s1.outdata(); // object s1 calls member function outdata()
 s2.outdata(); // object s2 calls member function outdata()
}

Run
Student details ...
Roll No = 1
Name = Tejaswi
Roll No = 10
Name = Rajkumar

In conventional programming languages, a function is invoked on a piece of data
(function-driven communication), whereas in an OOPL (object-oriented
programming language), a message is sent to an object (message –driven
programming) i.e., conventional programming is based on function abstraction
whereas, object oriented programming is based on data abstraction.

The object accessing its class members resembles a client-server model. A client seeks
a service whereas; a server provides services requested by a client. In the above
example, the class student resembles a server whereas, the objects of the class stduent
resembles clients. They make calls to the server by sending messages. In the
statements

S2.setdata(10,”Rajkumar”); // object s2 calls member function setdata

The object s2 sends the message setdata to the server with the parameters 10 and
Rajkumar. As a server, the member function setdata() of the class student performs
the operation of setting the data members according to the messages sent to it.
Similarly, the statements

 S2.outdata()

Can be visualized as sending message (outdata) to objects s2’s class to display object
contents. Thus, by its very nature, OO computation resembles a client-server-
computing model.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

89

Object Oriented Programming with C++ and Java

6.5 Inline Member Functions

The keyword inline is used as a function specifier only in function declarations. The
inline specifier is a hint to the compiler that inline substitution of the function body is
to be preferred to the usual function call implementation.

The advantage of using inline member functions are:

1. The size of the object code is considerably reduced.

2. It increases the execution speed

3. The inline member functions are compact functions calls.

The general form is:

 class user_name
 {
 //data variables;
 public:
 inline return_type function name (parameters);
 //other member functions;
 }

Whenever a function is declared with inline specifier, the C++compiler merely
replaces it with the code itself so the overhead of the transfer of control between the
calling portion of a program and a function is reduced.
// demonstration of inline function
include <iostream.h>
class sample
{
 int x;
 public:
 inline void getdata();
 inline void display ();
}
inline void sample :: getdata ()
{
 cout<<" enter a number"<<endl;
 cin>>x;
}
inline void sample:: display ()
{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 90

Class & Objects

 cout<<"entered number is = "<<x<<endl;
}
void main()
{
 sample ob;
 ob.getdata ();
 ob.display ();
}

6.6 Friend functions

The main concept of the object oriented programming are data hiding and data
encapsulation. Whenever data variables are declared in a private category of a class
these members are restricted from accessing by non-member functions. To access a
private data member by a non-member function is to change a private data member
to a public group. When the private or protected data member is changed to a public
category, it violates the whole concept of data hiding and data encapsulation. To
solve this problem, a friend function can be declared to have access to these data
members. Friend is a special mechanism for letting non-member functions access
private data. A friend function may be declared or defined within the scope of a
class definition. The keyword friend inform the compiler that it is not a member
function of the class.
The general form is
 friend return_type user_function_name(parameters);
 where friend is a keyword used as function modifier.

Example:
 class alpha
 {
 private:
 int x;
 public:
 void getdata();
 friend void display (alpha abc);
 {
 cout<<"value of x = "<<abc.x;
 cout<< endl;
 }

 };
 void sample :: getdata ()
 {
 cout<<"enter value for x \n";
 cin>>x;
 }
 void main ()
 {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

91

Object Oriented Programming with C++ and Java

 alpha a;
 a.getdata ();
 cout<<"accessing private data by non-member function"<<endl;
 display(a);
 }

6.7 The ‘This’ keyword

The members functions of every object have access to a sort of magic pointer named

this, which points to the object itself. Thus any member function can find out the

address of the object of which it is a member.

Example:
 // demonstration of this key word

 # include<iostream.h>

 class sample

 {

 private:

 char chararra[10];

 public:

 void reveal()

 cout<<"my object's address is "<< this;

};

 void main()

 {
 sample s1,s2,s3;

 s1.reveal();

 s2.reveal();

s3.reveal();

}
The main() program in this example creates three objects of type sample, then asks each object to

print its address, using the reveal() member function. This function prints out the value of the

this pointer.

Out put is

 my object's address is 0x8f5effec

 my object's address is ox8f5effec

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 92

Class & Objects

 my object's address is ox8f5effec

 Accessing Member data with this

When you call a member function, it comes into existence with the value of this set of
the address of the object for which it was called. The this pointer can be treated like
any other pointer to an object and can thus be used to access the data in the object to
points

// demonstration of accessing member function using this keyword
include<iostream.h>
class example
{
 private:
 int value;
 public:
 inline void display();
 {
 this-> value = 35;
 cout<<"contents of the value =" <<this->value;
 cout<<endl;
}
void main()
{
 example obj1;
 obj1.display();
}
the output is
 contents of the value = 20

6.8 Static class member

The static variables are automatically initialized to zero unless it has been initialized
by some other value explicitly.
Static member of a class can be categorized into two types.

1. Static data member
2. Static member function

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

93

Object Oriented Programming with C++ and Java

Static data member

Static data members are data objects that are common to all the objects of a class.
They exist only once in all object of this class. The static members are used in
information that is commonly accessible. This property of static data members may
lead a person to think that static members are basically global variables. This is not
true. Static members can be any one of the groups: public, private and protected, but
not global data.

Example:

// static data member
include<iostream.h>
class example
{
 private:
 static int counter;

 public:
 void display();
};
int example::counter =100;
void example::display ()
{
 int i;
for(i =0; i<=10; ++I)
 counter = counter+1;
}
cout<<"sum of the counter value ="<<counter
cout<< endl;
}void main()
{
 example obj1;
int i;
for(i = 0; i <=3; ++i)
{
 cout<< "count="<<I+1<<endl;
 obj.display();
cout<<endl;
}
output is
 count = 1
 sum of counter value = 155

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 94

Class & Objects

count = 2
 sum of counter value = 210
count = 3
 sum of counter value = 265

 Static member function

The key word static is used to precede the member function to make a member
function static. The static function is a member function of class and the static
member function can manipulate only on static data member of the class. The static
member function acts as global for member of its class without affecting the rest of
the program. The purpose of static member is to reduce the need for global variables
by providing alternatives that are local to a class. A static member function is not
part of objects of a class. Static members of a global class have external linkage. A
static member function does not have a this pointer so it can access nonstatic
members of its class only by .(dot) or ->

The static member function cannot be a virtual function. It cannot be declared with
the keyword const.

Example:

 //demonstration of static member function
 # include<iostream.h>
 class example
 {
 private:
 static int count; //static data member declaration
 public:
 example();
 static void display();
};
//static data definition
int example::count = 0;
example::example()
{
 ++count;
}
void example::display()
{
 cout<<"counter value ="<< count << endl;
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

95

Object Oriented Programming with C++ and Java

void main()
{
 cout<<"before instantiation of the object"<< endl;
 example::display ();
 example e1,e2;
 cout<<"after instatntiation of the object"<<endl;
 example::display ();
}
output is
 before instantion of the object
counter value =0
 after instatiation of the object
counter = 2

 Some Examples

A class encapsulates both data and functions manipulating them into a single unit. It
can be further used as an abstract

<iostream.h>
const int MAX_ITEMS = 25; // Maximum number of items that a bag can
hold
class bag
{
 private :
 int contents[MAX_ITEMS]; // bag memory area
 int itemcount // number of items present in a bag
 public :
 // sets itemcount to empty
 void setempty()
 {

 itemcount=0; // when you purchase a bag, it will be empty
 }
 void put(int item) // puts item into bag
 {
 contents[itemcount++]=item; // counter update
 }
 void show();
};

// display contents of a bag

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 96

Class & Objects

void bag::show()
{
 for(int i=0;i<itemcount;i++)
 cout << contents[i] <<” “;
 cout << endl;
}

void main()
{
 int item;
 bag b1;
 b1.setempty();// set bag to empty
while (1)
{
 cout << “Enter item number to be put into the bag <0-no item>:”;
 cin >> item;
 if (item == 0) // items ends, break
 break;
 b1.put(item);
 cout << “Items in bag :”;
 b1.show();
}
}

Run
Enter item number to be put into the bag <0-no item>: 1
Items in bag : 1
Enter item number to be put into the bag <0-no item>: 3
Items in bag : 1 3
Enter item number to be put into the bag <0-no item>: 2
Items in bag : 1 3 2
Enter item number to be put into the bag <0-no item>: 4
Items in bag : 1 3 2 4
Enter item number to be put into the bag <0-no item>: 0

In main(), the statement

 bag b1;

creates the object bag without initializing the itemcount to 0 automatically. However,
it is performed by a call to the function setempty() as follows:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

97

Object Oriented Programming with C++ and Java

 bag.setempty(); // set bag to empty

According to the philosophy of OOPs, when a new object such as bag is created, it
will naturally be empty. To provide such a behavior in the above program, it is
necessary to invoke the member function setempty explicitly. In reality, when a bag
is purchased, it might contain some items placed inside the bag as gift items. Such a
situation in C++ can be simulated by

 Bag b1 = 2;

It creates the object bag and initializes it with 2, indicating that the bag is sold with
two gift items. It resembles the procedure of initialization of a built-in data type
during creation, i.e., there must be a provision in C++ to initialize objects during
creation itself.

It is therefore clear that OOPs must provide a support for initializing objects when
they are created, and destroy them when they are no longer needed. Hence, a class in
C++ may contain two special member functions dealing with the internal workings
of a class. These functions are the constructors and the destructors. A constructor
enables an object to initialize itself during creation and the destructor destroys the
object when it is no longer required, by releasing all the resources allocated to it.
These operations are called object initialization and clean up respectively.

6.9 Short Summary

 The concept of code reusage can be implemented with the help of Overloading

functions

 Member variables and member functions are wrapped in a class

 Object is a run time entity

 Public, private and protected are the three access specifiers

 The members functions of every object have access to a sort of magic pointer

named this, which points to the object itself

 Static member functions are acting as a global member functions

6.10 Brain Storm

1. What is function overloading?

2. List the merits and demerits of function overloading over the conventional

functional usage.

3. What are the scope rules governing the function overloading?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 98

Class & Objects

4. What is meant by operator overloading?

5. List the C++ operators that can be overloaded for binary usage.

6. Describe how the data member of a class can be initialized in C++.

7. What is meant by ‘this’ operator?

8. What is a static class member?

9. What is a class?

10. Explain the following with respect to the object oriented programming: Private,

protected, public

11. What is a friend function?

12. How is a heap memory allocated in C++?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

99

Object Oriented Programming with C++ and Java

Lecture - 7

Unions, Nested Classes,
Constructors & Destracters

Objectives

In this lecture you will learn the following

 Knowing about Arrays

 Rules for writing constructors & Destructors

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 100

Unions, Nested Classes, constructors & Destructers

Lecture - 7

7.1 Snap Shot

7.2 Array Of Class Objects

7.3 Unions & Classes

7.4 Nested Classes

7.5 Constructors

7.6 Copy Constructors

7.7 Default Constructors

7.8 Parameterized Constructors

7.9 Destructors

7.10 Short Summary

7.11 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

101

Object Oriented Programming with C++ and Java

7.1 Snap Shot

C++ allows the user to create an array of any data type including user-defined data
types. Thus, an array of variables of a class data type can also be defined, and such
variables are called an array of objects. Union can be used as a user defined data type
whose size is sufficient to contain one of its member. Like control structures classes
can also be nested. The concept of constructors and Destructors are discussed.

7.2 Array Of Class Objects

An array of objects is often used to handle a group of objects, which reside
contiguously in the memory. Consider the following class specification:

 class student
 {
 Private :
 int roll_no;
 char name[20];

 public :

 void setdata(int roll_no_in,char *name_in);
 void outdata();
 };

The identifier student is a user-defined data type and can be used to create objects
that relate to students of different courses. The following definition creates an array
of objects of the student class:

 student science[10];
 student medical [5];
 student engg[25];

The array science contains ten objects, namely science [0]....science[9] of type student
class, the medical array contains 5 objects and the engg array contains 25 objects.
An array of objects is stored in the memory in the same way as a multidimensional
array created at compile time. The representation of the objects is created; member
functions are stored separately and shared by all the objects of student class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 102

Unions, Nested Classes, constructors & Destructers

 Roll_no
 Name
 Roll_no
 Name

 Roll_no
 name

.
.
.
.

An array of objects behaves similar to any other data-type array. The individual
element of an array of objects is referenced by using its index, and member of an
object is accesses using the dot operator. for instance, the statement.

 Engg[i].setdata(10,”Rajkumar”);

Sets the data members of the ith element of the array engg. Similarly, the statement

 Engg[i].outdata();

Will display the data of the ith element of the array engg[i]. The program
student1.cpp illustrates the use of the array of objects.

//student1.cpp: array of student data type

#include <iostream.h>
#include<string.h>
class stduent
{
 private:

 int roll_no;
 char name[20];

public:

 void setdata(int roll_no_in,char *name_in)
 {
 roll_no = roll_no_in;
 strcpy(name,name_in);
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

103

Object Oriented Programming with C++ and Java

void outdata()
{
 cout << “Roll No = “ << roll_no <<endl;
 cout << “Name = “ <<name <<endl;
}
};

void main()
{
 int i,roll_no,count;
 char response,name[20];
 student s[10];
 count=0;
for(i=0;i<10;i++)
{
cout << “Initialize student object (y/n) :”;
 cin >> response;
 if (response ==’y’ || response ==’Y’)
 {
 cout << “Enter roll no. Of student :”;
 cin >> roll_no;
 cout << “Enter name of student :”;
s[i].setdata(roll_no,name);
count++;
}
else
 break;
}
cout << “student details ...”<<endl;
for(i=0;i<count;i++)
 s[i].outdata();
}

 Run
Initialize student object (y/n) : y
Enter roll no. Of student : 1
Enter name of student : Rajkumar
Initialize student object (y/n) : y
Enter roll no. Of student : 2
Enter name of student : Tejaswi
Initialize student object (y/n) : y
Enter roll no. Of student : 3
Enter name of student : Savithri

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 104

Unions, Nested Classes, constructors & Destructers

Initialize student object (y/n) : n
Student details ...
Roll no = 1
Name = Rajkumar
Roll no = 2
Name = Tejaswi
Roll no = 3
Name = Savithri

In main(), the statement

 Student s[10];

Creates an array of 10 possible objects of the student class. It should be clearly
understood that an array of objects allow better organization of the program instead
of having 10 different variables and each one of them is the object of the student
class. Note that the subscripted notation used for object is similar to the manner in
which arrays of other data types are usually handled. The statement

 S[i].outdata();

Executes the outdata() member function in the student class for the ith object of the s
array.

7.3 Unions and class

Union is a user defined data type whose size is sufficient to contain one of its
members. At most, one of the members can be stored in a union at any time. A union
is also used for declaring classes in C++. The members of a union are public by
default.

A union allows to store its members only one at a time. A union may have member
functions including constructors and destructors, but not virtual functions. A union
may not have base class. An object of a class with a constructor or a destructor or a
user defined assignment operator cannot be a member of a union. A union can have
no static data member.
The general form is

 union user_defined_name

{
 private:
 //data;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

105

Object Oriented Programming with C++ and Java

 //methods;
 public:
 //methods;
 };
 user_defined_name object;

Example:

 union sample

{
 public:
 int a;
 char name;
 void display ();
 void sum ();
};

 // sample program
 # include<iostream.h>

 union sample
 {
 private:
 int x;
 float y;
 public:
 void getinfo ();
 void disinfo ();
 };
 void sample :: getinfo ()
 {
 cout<<"value of x (in integer):";
 cin>> x;
 cout<<"value of y (in float):";
 cin>> y;
 }
 void sample:: disinfo()
 {
 cout<< endl;
 cout<<"x = "<<x<< endl;
 cout << "y= " << y << endl;
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 106

Unions, Nested Classes, constructors & Destructers

 void main(void)
 {
 sample obj;
 cout<<"enter the following information"<< endl;

 obj.getinfo();
 cout<<"\ content of union"<< endl;

obj.disinfo();
 }

 the output is
 enter the following information
 value of x (in integer) : 45
 value of y(in float) : 9.89

 content of union
 x = 45
 y = 9.89
7.4 Nested classes

Including other class declarations inside a class can increase the power of abstraction.
A class declared inside the declaration of another class is called nested class. Nested
classes provide classes with non-global status. Host and nested classes follow the
same access rules for members that exist between non-nested classes. Nested classes
could be used to hide specialized classes and their instances within a host class.

The general form of nested class declaration is:

 Class outer_class_name
{
 private:
 // data;
 public:
 //methods;
 class inner_class_name
 {
 private:
 //data for inner class;
 public:
 //methods for inner class;
 }; // end of inner class declaration
}; // end of outer class declaration

A member of a class may itself be a class. Such nesting enables building of very
powerful data structures. The student class can be enhanced to accommodate the date

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

107

Object Oriented Programming with C++ and Java

of birth of a student. The new member data type date is a class by itself as shown
below

 class student
 {
 private:
 int rollno;
 char name[25];
 char branch [15];
 int marks;
 public:
 class date
 {
 int day;
 int month;
 int year;
 date ()
 {
 read ();
 }
 }birthday;;
 student ()
 {

 }
 student ()
 {

 }
 read ()
 {
 cin>>rollno;

 birthday.read ();
 }

 };

The embedded class date is declared within the enclosing class declaration. An object
of type student can be defined as follows:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 108

Unions, Nested Classes, constructors & Destructers

 student s1;

The year in which the student s1 was born can be accessed as follows:

 s1.birthday.year

A statement such as,

 s1.date.day = 2; //error

is invalid, because members of the nested class must be accessed using its object
name.
The feature of nesting of classes is useful while implementing powerful data
structures such as linked lists and trees. For instance, the stack data structure can be
implemented having a node data member, which is an instance of another class (node
class).

Member functions of a nested class have no special access to members of enclosing
class. Member functions of an enclosing class have no special access to member of a
nested class.

The following class declaration illustrates how the member functions of a nested class
are accessed.

 Class outer
 {
 int a;
 void out_funt(int b);
 class inner
 {
 int x;
 void inner_funt(int y);
 };
 };

 outer ob1; // creating an object for outer class
 outer :: inner :: ob2; //creating an object for the inner class
 ob1.outer_funt(); //accessing an outer class member function
 ob2.inner.funt(); // accessing of inner class member function

When a class is defined as a member of another class, it contains only the scooping of
outer class. The object of an outer class does not contain the object of the inner class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

109

Object Oriented Programming with C++ and Java

//classes within classes demonstration
include <iostream.h>
include<string.h>

class student_info
{

 private:
 char name[20];
 int rollno;
 char sex;
 public:
 student_info(char *na, int rn, char sx);
 void display ();
 class date
 {
 private:
 int day;
 int month;
 int year;
 public:
 date (int dy, int mh, int yr);
 void show_date ();
 class age_class
 {
 private:
 int age;
 public:
 age_class(int age_value);
 void show_age ();
 };
 };
 };

student_info :: student_info(char *na, int rn, char sx)
{

 strcpy(name, na);
 rollno = rn;
 sex = sx;

}
student_info :: date :: date (int dy, int mh, int yr)
{

 day = dy;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 110

Unions, Nested Classes, constructors & Destructers

 month = mh;
 year = yr;

}
student_info : : date : : age_class : : age_class(int age_value)
{

 age = age_value;
}
void student_info :: display ()
{

 cout <<"student's name, roll number, sex, date of birth, age \n";
 cout <<"___\n";
 cout << name << " "<<'\t';
 cout<<rollno<<" ";
 cout<<sex<<" ";

}
void student_info ::date :: show_date ()
{
 cout<<day<< '/ '<< month << ' /' <<year<<'\t';
}
void student_info::date::age_class:: show_age ()
{
cout<< '\t' << age << endl;

 cout <<" ___"<< endl;
}
void main()

{
 student_info obj1("Teresa", 78909,'f');

 student_info::date obj2(25,3,67);
 student_infor::date::age_class obj3(33);
 obj1.display ();
 obj2.show_date ();
 obj3.show_age();

}

Out put of above program is

student's name, roll number, sex , date of birth, age
__
Teresa 78909 f 25/3/67 33
__

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

111

Object Oriented Programming with C++ and Java

7.5 Constructors

A constructor is a special function for automatic initialization of an object. Whenever
an object is created, the special member function, i.e., the constructor will be
executed automatically. A constructor function is different from all other nonstatic
member functions in a class because it is used to initialize the variables of whatever
instance being created.

Rules for writing constructors:

1. A constructor name must be the same as that of its class name.
2. It is declared with no return type
3. It cannot be declared const or volatile but constructor can be invoked for a const

and volatile object
4. It may not be static
5. It may not be virtual
6. It should have public or protected access within the class

The general form of constructor declaration is
 Class user_name
 {
 private:

 protected:

 public:
 user_name(); // constructor

 };
 user_name :: user_name()
 {

}
Example:
 Class student
 {
 private:
 char name[20];
 int stcode;
 char address[20];
 public:
 student (); // constructor

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 112

Unions, Nested Classes, constructors & Destructers

 void get_data();
 void put_data();

}
student :: student() //constructor
{

}

Constructors and destructors can be explicitly called. A constructor is automatically
invoked when an object begins to live. The constructor called before main() starts
for execution. The constructors can be invoked whenever a temporary instance of a
class needs to be created.

Example program:

//program generates Fibonacci numbers using constructors
include<iostream.h>
class fibonacci
{
 private:
 long int f0,f1,fib;
 public:
 fibonacci ()
 {
 f0 = 0;
 f1 = 1;
 fib = f0 + f1;
 }
 void increment()
 {
 f0 = f1;
 f1 = fib;
 fib = f0 + f1;
 }
 void display ()
 {
 cout<<"fibonacci number = "<<fib<<'\t';
 }
 };
void main(void)
{
 fibonacci number;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

113

Object Oriented Programming with C++ and Java

 for (int i = 0; i<=10;++i)
 {
 number.display();
 number.increment ();
 }
}

7.6 Copy constructors

Copy constructors are always used when the compiler has to create a temporary
object of a class object. The copy constructors are used in the following situations:

1. The initialization of an object by another object of the same class.
2. Return of objects as a function value.
3. Stating the object as by value parameters of a function

The general form is:

 class_name :: class_name(class_name &ptr)

 where class_name is user defined class name and ptr
 is pointer to a class object class_name.

Normally, the copy constructors take an object of their own class as arguments an
produce such an object. The copy constructors usually do not return a function value
as a constructors cannot return any function values.

// program fibonacci numbers using copy constructors
include<iostream.h>
class fibonacci
{
 private:
 long int f0,f1,fib;
 public:
 fibonacci ()
 {
 f0 = 0;
 f1 = 1;
 fib = f0 + f1;
 }
 fibonacci (fibonacci &ptr)
 {
 f0 = ptr.f0;
 f1 = ptr.f1;
 fib = ptr.fib;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 114

Unions, Nested Classes, constructors & Destructers

}
 void increment()
 {
 f0 = f1;
 f1 = fib;
 fib = f0 + f1;
 }
 void display ()
 {
 cout<<"fibonacci number = "<<fib<<'\t';
 }
 };
void main(void)
{
 fibonacci number;
 for (int i = 0; i<=10;++i)
 {
 number.display();
 number.increment ();
 }
}

7.7 Default constructors

The default constructor is a special member function which is invoked by the C++
compiler without any argument for initializing the object class. C++ compiler
automatically generates default constructors if it is not defined.

The general form is

 class user_name
 {
 private:

 protected:

 public:
 user_name (); //default constructor

 }
 user_name :: user_name () //without any parameters

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

115

Object Oriented Programming with C++ and Java

Example:
 // program to demonstrate default constructor

include<iostream.h>
 class student
 {
 private:
 char name[20];
 int rollno;
 char sex;
 float height;
 float weight;
 public:
 student();
 void display();
 };
 student :: student()
 {
 name[0] = '\0';
 rollno = 0;
 sex = '\0';
 height = 0;
 weight = 0;
 }
 void student:: display ()
 {
 cout <<"name ="<< name<<endl;
 cout <<"rollnumber ="<< rollnoname<<endl;
 cout <<"sex ="<< sex<<endl;
 cout <<"height ="<< height<<endl;

cout <<"weight ="<< weight<<endl;
 }
 void main()
 {
 student a;
 cout <<"demonstration of default constructor\n";
 a.display();

 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 116

Unions, Nested Classes, constructors & Destructers

7.8 Parameterized Constructors

Constructors can be invoked with arguments, just as in the case of functions. The
argument list can be specified within braces similar to the argument-list in the
function. Constructors with arguments are called parameterized constructors. The
distinguishing characteristic is that the name of the constructor functions have to be
the same as that of its class name. Another constructor with arguments could have
been provided with one integer value to initialize the data members.
Example
 class test
 {
 //data
 test(int data1) // constructor with parameter
 {
 //data
 }

 };
 test t1(2); // 2 is passed a parameter
 test t2 = 3; // 3 is passed as a parameter

Since C++ allows function overloading, a constructor arguments can co-exist with
another constructor without arguments.

// sample program
include<iostream.h>
const int MAX_ITEMS = 25;
class bag
{
 private:
 int contents[MAX_ITEMS];
 int itemcount;
 public:
 bag ()
 {
 itemcount = 0;
 }
 bag (int item)
 {
 contents[0] = item;
 itemcount = 1;

 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

117

Object Oriented Programming with C++ and Java

 void put(int item)
 {
 contents[itemcount++] = item;
 }
 void show ();
};
void bag :: show ()
{
 if (itemcount)
 for(int i = 0; i<itemcount ; i++)
 cout<< contents[I] << " ";
 else
 cout<<"Nil";
 cout << endl;
}
void main()
int item;
bag b1;
bag :: bag ()
bag b2 = 4;
bag :: bag(int item)
cout<< "gifted bag1 initally has :";
b1.show ();
cout<<"gifted bag2 initially has :";
b2.show ();
while (1)
{
 cout<<"enter item number to be put into the bag <0-no item>";
 cin>> item;
 if (item == 0)
 break;
 b2.put(item);
 cout<<"items in bag 2:";
 b2.show ():
}
}

the output is

gifted bag1 initally has : Nil
gifted bag2 inially has: 4
enter item number to be put into the bag2<0-no item> 1

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 118

Unions, Nested Classes, constructors & Destructers

items in bag2 : 4 1
enter item number to be put into the bag 2<0-no item> 5
items in bag2 4 1 5

The bag class has two constructors. The first constructor does not have arguments.
The next constructor has a single argument
The statement
 bag b1;
creates the object b1 and initializes its data member by invoking the no-argument
constructor bag :: bag ()

7.9 Destructors

A destructor is a function that automatically executes when an object is destroyed. A
destructor function gets executed whenever an instance of the class to which it
belongs goes out of existence. The primary use of the destructor function is to release
space on the heap.

Rules for writing destructor function:

1. A destructor function name is the same as that of the class it belongs except that

the first character of the name must be a tilde(~).

2. It is declared with no return type.

3. It cannot be declared static, const or volatile

4. It takes no arguments and therefore cannot be overloaded

5. It should have public access in the class declaration.

The general form is

 class user_name
 {
 private:

 //data variables;

 //member functions;

 public:

 user_name (); //constructor

 ~user_name(); //destructor

 //other member functions;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

119

Object Oriented Programming with C++ and Java

 };

 Example:

 class student
 {
 char name[20];
 int age;
 float avg;
 int mark1,mark2, mark3;
 public:
 student(); //construcor
 ~student(); //destructor
 void getdata ();
 void display ();

 }

// demonstration of constructor and destructor
include<iostream.h>
include<stdio.h>
class accout
{
 privat:
 float balance;
 float rate;
 public:
 account ();
 ~account ();
 void deposit ();
 void compound ();
 void getbalance ();
 void menu ();
};
account :: account () //constructor
{
 cout << "enter the initial balance \n";
 cin>>balance;
 cout<<"interest rate"<< endl;
 cin>> rate;
}
account :: ~account () // destructor

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 120

Unions, Nested Classes, constructors & Destructers

{
 cout<<"data base has been deleted"<< endl;
}
void account :: deposit ()
{
 float amount;

 cout<<"enter the amount"<< endl;

 cin>>amount;

 balance = balance + amount;

}
void account :: withdraw ()
{
 float amount;
 cout<<"how much to withdraw?\n";
 cin>>amount;
 if (amount <= balance)
 {
 balance = balance - amount;
 cout<<"amount drawn = "<<amount<< endl;
 cout<<"current balance = "<<balance<<endl;
 }
 else
 cout<<0;
}
void account :: compound ()
{
 float interest;

 interest = balance * rate;

 balance = balance + interest;

 cout<<"interest amount = " << interest<< endl;

 cout<<"total amount = << balance<<endl;

}
void account :: getbalance ()
{
 cout<<"current balance : = "<<balance<<endl;
}
void account :: menu ()
{
 cout <<" press d -> deposit"<<endl;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

121

Object Oriented Programming with C++ and Java

cout <<" press w -> withdraw"<<endl;

cout <<" press c -> compound interest"<<endl;

cout <<" press g -> get balance"<<endl;

cout <<" press q -> quit"<<endl;

cout <<" option, please ?\n";

 }
 void main (void)
 {
 class account acct;
 char ch;
 while ((ch = getchar ()) ! = 'q')
 {
 switch (ch)
 {
 case 'd':
 acct .deposit ();
 break;
 case 'w':
 acct . withdraw ();
 break;
 case 'c':
 acct . compound ();
 break;
 case 'g':
 acct . getbalance ();
 break;
 }
 }
 }

7.10 Short Summary

 An array allocates memory contiguously

 Union can be used to get dissimilar data input

 Nested classes are used to give more information

 Constructors are used for automatic initialization

 Destructors are used to destroy the constructor

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 122

Unions, Nested Classes, constructors & Destructers

7.11 Brain Storm

1 What is an array of class object?

2 How the array of class objects is defined in C++?

3 In what way a union data type is useful for constructing a class object in C++?

4 Explain the syntactic rules of defining the union data type using a class object.

5 What is a nested class?

6 How a nested class is defined and declared in C++?

7 List the merits and demerits of declaring a nested class.

8 What is a constructor? What are the uses of declaring a constructor member

function in a program?

9 What are the rules governing the declaration of a constructor?

10 When does a constructor member function is invoked in a class?

11 List the merits and demerits of copy constructors

12 What is a default constructor?

13 Explain parameterized constructors

14 When does a destructor member function is invoked in a class?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

123

Object Oriented Programming with C++ and Java

Lecture - 8

Inheritance

Objectives

In this lecture you will learn the following

 Inheritance

 Types of Inheritance - Example

 Overriding Member Function

 Calling the Base Method

 Single & Multiple Inheritance

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 148

Inheritance

Lecture - 8

8.1 Snap Shot

8.2 Inheritance

8.3 Virtual Base Class

8.4 Container Class

8.5 Types of Inheritance

8.6 Single Inheritance

8.7 Types of Derivation

8.8 Multiple Inheritance

8.9 Short Summary

8.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

149

Object Oriented Programming with C++ and Java

8.1 Snap Shot

This Lecture provides the different Forms and Types of Inheritance and also Explains
Defining Derived Classes from Base Class, Ambiguity in Inheritance, Using Virtual
Base Classes to avoid the ambiguity and Abstract Classes.

8.2 Inheritance

Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of classification. If you think
about it, most knowledge is made manageable by hierarchical classifications. For
example, a Red Delicious apple is part of the classification apple, which in turn is
part of the fruit class, which is under the larger class food. Without the use of
classifications, each object would have to define explicitly all of its characteristics.
However, through the use of classifications, an object need only define those
qualities that make it unique within its class. It is the inheritance mechanism that
makes it possible for one object to be a specific instance of a more general case. As
you will see, inheritance is an important aspect of object-oriented programming.

Inheritance allows new classes to be built from older and less specialized classes
instead of being rewritten from scratch. The technique of building new classes from
the existing classes is called inheritance.

Base Class

 Feature A

 Feature B

 Feature C

 Feature A

 Feature B

Inheritance, a prime feature of OOPs can be stated as the process of creating new
classes (called derived classes), from the existing classes (called base classes). The
derived class inherits all the capabilities of the base class and can add refinements
and extensions of its own. The base class remains unchanged. The derivation of a
new class from the existing class is represented in the above figure.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 150

Inheritance

The main advantages of the inheritance are:

 Reusability of the code
 Reliability of the code
 Enhancement of the base class

 When to Use Inheritance?

The following principles have to be followed to promote the use of inheritance in
programming, which leads to code reuse, easy of code maintenance and extension:

 The most common use of inheritance and sub classing is for specialization, which
is the most obvious and direct use of this rule. If two abstract concepts A and B
are being considered, and the sentence A is a B makes sense, then it is probably
correct in making A as a subclass of B. Examples car is a vehicle, triangle is a
shape, etc.

 Another frequent use of inheritance is to guarantee that classes maintain a certain
common interface; that is, they implement the same methods. The parent class
can be a combination of implemented operations and operations that are to be
implemented in the child classes. Often, there is no interface change between the
super type and subtype – the child implements the behaviour described instead
of its parent class. This feature has much significance with pure virtual function
and will be discussed later.

 Using generalization technique, a subclass extends the behaviour of the super
class to create a more general kind of object. This is often applicable when one is
building on a base of existing classes that should not, or cannot be modified.

 While subclassing for generalization modifies or expands on the existing
functionality of a class, subclassing for extension adds totally new abilities.
Subclassing for extension can be distinguished from subclassing for
generalization in derivation. Generalization must override at least one method
from the parent, and the functionality is tied to that of the parent whereas
extension simply adds new methods to those of the parent, and functionality is
less strongly tied to the existing parent methods.

 In subclassing for limitation, the behavior of the subclass is more restricted than
the behavior of the superclass. Like subclassing for generalization, subclassing
for limitation occurs most frequently when a programmer is building on a base of
existing classes that should not or cannot be modified.

 Subclassing for variance is useful when two or more classes have similar
implementations, but there does not seem to be any hierarchical relationship is to
factor out the common code into an abstract class, and derive the classes from
these common ancestors.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

151

Object Oriented Programming with C++ and Java

 Subclassing by combination occurs when a subclass represents a combined
feature from two or more parent classes.

8.3 Virtual Base Class

Consider a situation where all the three kinds of inheritance, namely multilevel,
multiple and hierarchical inheritance are involved. This is illustrated in fig 8.11 . the
‘child’ has two direct base classes ‘parent1’ and ‘parent2’ which themselves have a
common base class ‘grandparent’. The ‘child’ inherits the traits of ‘grandparent’ via
two separate paths. It can also inherit directly as shown by the broken line. The
‘grandparent’ is sometimes referred to as indirect base class.

Inheritance by the ‘child’ as shown in fig 8.11 might pose some problems. All the
public and protected members of ‘grandparent’ are inherited into ‘child’ twice, first
via ‘parent1’ and again via ‘parent2’. This means, ‘child’ would have duplicate sets of
the members inherited from ‘grandparent’. This introduces ambiguity and should be
avoided.

The duplication of inherited members due to these multiple paths can be avoided by
making the common base class (ancestor class) as virtual base class while declaring
the direct or intermediate base classes as shown below:

Class A //grandparent
{

};
class B1 : virtual public A // parent1
{

};
class B2 : public virtual A // parent2
{

};
class C : public B1,public B2 //child
{
 //only one copy of A
 // will be inherited
};

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 152

Inheritance

when a class is made a virtual base class, C++ takes necessary care to see that only
one copy of that class is inherited, regardless of how many inheritance paths exist
between the virtual base class and a derived class. Note that the keywords virtual
and public may be used in either order.
 student

student

student

student

For example, consider again the student results processing system. Assume that the
class sports derive the roll_number from the class student. Then, the inheritance
relationship will be shown above. A program to implement the concept of virtual
base class is illustrated in program.

#include<iostream.h>
class student
{
 protected:
 int roll_number;
 public:
 void get_number(int a)
 {
 roll_number=a;
 }
 void put_number(void)
 {
 cout << “Roll No :” << roll_number << “\n”;
 }
};
class test:virtual public student
{
 protected:
 float part1,part2;
 public:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

153

Object Oriented Programming with C++ and Java

 void get_marks(float x,float y)
 {
 part1=x;
 patr2=y;
 }
 void put_marks(void)
 {
 cout << “Marks Obtained :” <<”\n”;
 cout << “Part1 = “ << part1 << “\n”;
 cout << “Part2 = “ << part2 << “\n”;
 }
};
class sports : public virtual student
{
 protected:
 float score;
 public :
 void get_score(float s)
 {
 score=s;
 }
 void put_score(void)
 {
 cout << “sports wt:” <<score << “\n\n”;
 }
};
class result : public test,public sports
{
 float total;
public:
 void display(void);
};
void result :: display(void)
{
 total = part1 +part2 +score;
 put_number();
 put_marks();
 put_score();
 cout << “Total Score :” << total << “\n”;
}
main()
{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 154

Inheritance

 result studnet_1;
 student_1.get_number(678);
 student_1.get_marks(30.5,25.5);
student_1.get_score(7.0);
stduent_1.display();
}

The output would be

Roll No : 678
Marks Obtained :
Part1 = 30.5
Part2 = 25.5
Sport wt : 7
Total Score : 63

8.4 Container Class

C++ allows to declare an object of a class as a member of another class. When an
object of a class is declared as a member of another class, if is called as a container
class. Some of the examples for container classes are arrays, linked lists, stacks and
queues.

The general syntax for the declaration of container class is,
 Class user_defined_name_l
 {

};
class user_defined_name_2
{

};
class user_defined_name_n
{

};

class derived_class

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

155

Object Oriented Programming with C++ and Java

{
 user-defined-name-1 obj1;
 user_defined_name_2 obj2;

 user_defined_name_n objn;
};

for example, the following program segment illustrates how to declare the container
class.

Class basic_info
{
 private:
 char name[20];
 public:
 void getdata();
 //end of class definition
};
class academic_fit
{

 private:
 int rank;
 public:
 void getdata();
}; // end of class definition

class financial_assit
{
 private:
 basic_info bdata;
 academic_fit acd;
 float amount;
public:
 void getdata();
 void display();
}; //end of class definition

void main()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 156

Inheritance

{
 financial_assit objf;

}

8.5 Types of Inheritance

The derived class inherits some or all the features of the base class depending on the
visibility mode and level of inheritance. Level of inheritance refers to the length of its
(derived class) path from the root (top base class). A base class itself might have been
derived from other classes in the hierarchy. Inheritance is classified into the
following forms based on the levels of inheritance and interrelation among the
classes involved in the inheritance process.

 Single Inheritance

 Multiple Inheritance

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid Inheritance

The different forms of inheritance relationship are depicted in the following figure.

 Single Multiple
 Inheritance Inheritance
 Class A

Class B

Class A Class B

Class C

 Hierarchical Multilevel Hybrid
 Inheritance Inheritance Inheritance

 A

B C D

A

 B

 C

A

 B C

 D

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

157

Object Oriented Programming with C++ and Java

MultiPath
 Inheritance

A

B C

D

Single Inheritance: Derivation of a class from only one base class is called Single
Inheritance.

Multiple Inheritance: Derivation of a class from several base classes is called
multiple inheritance.

Hierarchical Inheritance: Derivation of several classes from a single base class

Multilevel Inheritance: Derivation of a class from another derived class is called
multilevel inheritance

Hybrid Inheritance: Derivation of a class involving more than one form of
inheritance is known as hybrid inheritance.

Multipath inheritance: Derivation of a class from other derived classes, which are
derived from the same base class is called multipath inheritance.

Class Revisited

C++ not only supports the access specifiers private and public, but also an important
access specifier, protected, which is significant in class inheritance. As far as the
access limit is concerned, within a class or from the objects of a class, protected
access-limit is same as that of the private specifier. However, the protected specifier
has a prominent role to play in inheritance. A class can use all the three visibility
modes as illustrated below:
 Class classname
 {
 private:
 // Visible to member functions within

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 158

Inheritance

 // its class but not in derived class
 protected:
 // Visible to member functions within its
 //class and derived class
 public:
 //visible to member functions within
 //its class, derived classes and through objects
 }

 Defining the derived class:

The declaration of a singly derived class is as that same of an ordinary class. A
derived class consists of the following components.

1. The Keyword class
2. The name of the derived class
3. A single colon
4. The type of derivation(private, public or protected)
5. The name of the base or parent class
6. The remainder of the class definition

The general syntax of the derived class declaration is as follows.

 Class derived_class_name : private/public/protected base-class-name
 {
 private:
 // Date members
 //Methods
 public:
 //Data members
 //Methods
 protected:
 //Data Members1
 //Methods
 }

8.6 Single Inheritance

Single inheritance is the process of creating new classes from an existing base class.
The existing class is known as the direct base class and the newly created class is
called as a singly derived class.

Single inheritance is the ability of a derived class to inherit the member functions and
variables of the existing base class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

159

Object Oriented Programming with C++ and Java

 Example

A program to read the derived class data members such as name, roll, sex, height,
weight from the keyboard and display the contents of the class on the screen. This
program demonstrates a single inheritance concept, which consists of a base class
and a derived class.

 #include <iostream.h>
 #include <iomanip.h>
 class basic_info
 {
 private:
 char name[20];
 long int rollno;
 char sex;
 public:
 void getdata();
 void display();
 };
 class physical_fit: public basic_info
 {
 private:
 float height;
 float weight;
 public:
 void getdata();
 void display();
 };
 void basic_info::getdata()
 {
 cout<<”Enter a name ?\n”;
 cout>>name;
 cout<<”Roll No.?\n”;
 cin>>rollno;
 cout<<”Sex ?”\n”;
 cin>>sex;
 }
 void basic_info::display()
 {
 cout<<name<<” “;
 cout<<rollno<<” “;
 cout<<sex<<” “;
 }
 void physical_fit::getdata()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 160

Inheritance

 {
 basic_info::getdata();
 cout<<”Height ?\n”;
 cin>>height;
 cout<<”Weight ?\n”;
 cin>>weight;
 }

void physical_fit::display()
{
 basic_info::display();
 cout<<setprecision(2);
 cout<<height<<” “;
 cout<<weight<<’ “;
}
void main()
{
 physical_fit a;
 cout<<”Enter the following information \n”;
 a.getdata();

cout<<”---\n";
cout<<”Name RollNo Sex Height Weight \n”;

 cout<<”---\n“;
 a.display();

cout<<endl;
cout<<”--\n“;

}
 Ambiguity in Single Inheritance

Whenever a data member and member function are defined with the same name in
both the base and the derived classes, these names must be without ambiguity. The
scope resolution operator (::) may be used to refer to any base member explicitly.
This allows access to a name that has been redefined in the derived class.

For example, The following program segment illustrates how ambiguity occurs when
the getdata() member function is accessed from the main() program.

class baseA

 {
 public:

void getdata()
{

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

161

Object Oriented Programming with C++ and Java

 }

 };

class baseB
 {

 public:
void getdata()
{

 }

 };

 class derivedC:public baseA, public baseB
 {
 public:

void getdata()
{

 }

 };
 void main()
 {
 derivedC obj;
 obj.getdata();
 }

The members are ambiguous without scope operators. When the member function
getdata() is accessed by the class object, naturally, the compiler cannot distinguish
between the member function of the class baseA and the class baseB. Therefore it is
essential to declare the scope operator explicitly to call a base class member as
illustrated below:

 obj.baseA::getdata();

 obj.baseB::getdata();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 162

Inheritance

8.7 Types of Derivation

Inheritance is a process of creating a new class from an existing class. While deriving
the new classes, the access control specifier gives the total control over the data
members and methods of the base classes. A derived class can be defined with one of
the access specifiers, viz. Private, public and protected.

Public Inheritance

The most important type of access specifier is public. In a public derivation

 Each public member in the base class is public in the derived class

 Each protected member in the base class is protected in the derived class

 Each private member in the base class remains private in the base class

The general syntax of the public derivation is:

class base_class_name
{

};
class derived_class_name:public base_class_name
{

};

For example, the following program segment illustrates how to access each member
of the base class by the derived class members:

Class baseA
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

163

Object Oriented Programming with C++ and Java

class derivedD:public baseA
{
 private:
 int w;
};

The class derivedD is derived from the base class baseA and the access specifier is
public. The data members of the derived class derivedD is

 int x
 int y;
 int z;
 int w;

The following table shows the access specifier of the data member of the base class in
the derived class:

Member in DerivedD Access Status How obtained

X Not accessible From class baseA
Y Protected From class baseA
Z Public From class baseA
W Private Added by class derivedD

Private Inheritance

In a private derivation,

 Each public member in the base class is private in the derived class.

 Each protected member in the base class is private in the derived class

 Each private member in the base class remains private in the base class and hence
it is visible only in the based class

For eg,

 Class baseA
 {
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 164

Inheritance

class derivedD:private baseA
{
 private:
 int w;
};

The class derivedD is derived from the base class baseA and the access
specifier is private. The data members of the derived class derivedD is

 Int x,y,z,w;

The following table shows the access specifier of the data member of the base class in
the derived class:

Member in DerivedD Access Status How obtained

X Not accessible From class baseA
Y Private From class baseA
Z Private From class baseA
W Private Added by class derivedD

Protected Inheritance

In a protected inheritance,

 Each public member in the base class is protected in the derived class.

 Each protected member in the base class is protected in the derived class

 Each private member in the base class remains private in the base class and hence
it is visible only in the base class.

For eg,
 Class baseA

 {
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class derivedD:protected baseA
{
 private:
 int w;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

165

Object Oriented Programming with C++ and Java

};

The class derivedD is derived from the base class baseA and the access specifier is
protected. The data members of the derived class derivedD is

 int x,y,z,w;

The following table shows the access specifier of the data member of the base class in

Member in
DerivedD

Access Status How obtained

X Not accessible From class baseA
Y Protected From class baseA
Z Protected From class baseA
W Private Added by class derivedD

8.8 Multiple Inheritance

In the original implementation of C++, a derived class could inherit from only one
base class. Even with this restriction, the object-oriented paradigm is a flexible and
powerful programming tool. The latest version of the C++ compiler implements the
multiple inheritance. In this section, how a class can be derived from more than one
base class is explained.

Multiple inheritance is the process of creating a new class from more than one base
classes. The syntax for multiple inheritance is similar to that of single inheritance.

 Class baseA
 {

 };
 class baseB
 {

 };
 class derivedC:public baseA, public baseB
 {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 166

Inheritance

 };
The class derivedC is derived from both classes baseA and baseB.

Multiple inheritance is a derived class declared to inherit properties of two or more
parent classes(base classes). Multiple inheritance can combine the behaviour of
multiple base classes in a single derived class. Multiple inheritance has many
advantages over the single inheritance such as rich semantics and the ability to
directly express complex structures. In C++, derived classes must be declared during
the compilation of all possible combinations of derivations and the program can
choose the appropriate class at run time and create object for the application.

In a single inheritance, a derived class has a single base class. In multiple inheritance,
a derived class has multiple base classes. In a single inheritance hierarchy, a derived
class typically represents a specialization of its base class. In a multiple inheritance
hierarchy, a derived class typically represents a combination of its base classes. The
rules of inheritance and access do not change from a single to a multiple inheritance
hierarchy. A derived class inherits data members and methods from all its base
classes, regardless of whether the inheritance links are private, protected or public.

Example Program:

A program to illustrate how a multiple inheritance can be declared and defined in a
program. This program consists of two base classes and one derived class. The base
class basic_info contains the data members:name, rollnumber, sex. An another base
class academic_fit contains the data members:course,semester and rank. The derived
class financial_assit contains the data member amount besides the data members of
the base classes. The derived class has been declared as public inheritance. The
member functions are used to get information of the derived class from the keyboard
and display the contents of class objects on the screen.

 #include <iostream.h>
 #include <iomanip.h>
 class basic_info
 {
 private:
 char name[20];
 long int rollno;
 char sex;
 public:
 void getdata();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

167

Object Oriented Programming with C++ and Java

 void display();
 };
 class academic_fit
 {
 private :
 char course[20];
 char semester[10];
 int rank;
 public:
 void getdata();
 void display();
 };
 class financial_assit: private basic_info,private academic_fit
 {
 private:
 float amount;
 public:
 void getdata();
 void display();
 };
 void basic_info::getdata()
 {
 cout<<”Enter a name? \n”;
 cin>>name;
 cout<<”Roll no ?\n”;
 cin>>rollno;

cout<<”Sex ?\n”;
cin>>sex;

 }
 void basic_info::display()
 {
 cout<<Name<<” “;;
 cout<<rollno<<” “;
 cout<<sex<<” “;
 }

void academic_fit::getdata()
{
 cout<<”Course name (B.Tech/MCA/DCA etc) ?\n”;
 cin>>course;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 168

Inheritance

 cout<<”Semester (First/second etc) ? \n”;
 cin>>semester;
 cout<<”Rank of the student\n”;
 cin>>rank;
}
void academic_fit::display()
{
 cout<<course<<” “;
 cout<<semester<<” “;
 cout<<rank<<” “;
}
void financial_assit::getdata()
{
 basic_info::getdata();
 academic_fit::getdata();
 cout<<”amount in rupees ? \n”;
 cin>>amount;
}
void financial_assit::display()

{
 basic_info::display();
 academic_fit::display();
 cout<<setprecision(2);

cout<<amount<<” “;
 }
 void main()
 {
 financial_assit f;
 cout<<”Enter the following information for “;
 cout<<”Financial assistance\n”;
 f.getdata();
 cout<<endl;
 cout<<”Academic performance for financial Assistance\n”;
 cout<<”--\n“;
 cout<<”Name Rollno Sex Course Semester Rank Amount\n”;

 cout<<”--\n“;
 f.display();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

169

Object Oriented Programming with C++ and Java

 cout<<endl;
 cout<<”--\n“;
 }

 Ambiguity in the Multiple inheritance

To avoid ambiguity between the derived class and one of the base classes or between
the base class themselves, it is better to use the scope resolution operator::

Along with the data members and methods.

 #include <iostream.h>
 class A
 {
 char ch;

 public:
 A(char c)
 {
 ch=c;
 }
 void show()
 {
 cout<<ch;
 }
 };

 class B
 {
 char ch;
 public:
 B(char c)
 {
 ch=c;
 }
 void show()
 {
 cout<<ch;
 }
 };

 class C:public A, public B
 {
 char ch;
 public:
 C(char c1, char c2, char c3):A(c1),B(c2)
 {
 ch=c3;
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 170

Inheritance

 };

 void main()
 {
 C objc(‘a’,’b’,’c’);
 // Objc.show(); Error: Field show is ambiguous in C
 cout<<”Objc.A::show()=”;
 objc.A::show();
 cout<<”Objc.B::show()=”;
 objc.B::show();
 }

8.9 Short Summary

 Inheritance is the most powerful feature of Object oriented programming

 The main advantages are

 Reusability of the code

 To increase the reliability of the code

 To add some enhancement to the base class

 Single inheritance is the process of creating new classes from an existing base

class.

 Multiple inheritance is the process of creating a new class from more than one

base classes.

8.10 Brain Storm

1. Define: inheritance

2. What are the advantages of inheritance?

3. What is the difference between the base class and derived class?

4. What are the types of inheritance?

5. Explain the types of inheritance.

6. What is a container class?

7. List the pros and cons of a container class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

171

Object Oriented Programming with C++ and Java

Lecture - 9

 Polymorphism

Objectives

In this lecture you will learn the following

 Knowing briefly about Polymorphism

 Overloading Member Function

 Virtual Functions

 Restriction On Using Abstract Classes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 172

Polymorphism

Lecture - 9

9.1 Snap Shot

9.2 Polymorphism

9.3 Types of Polymorphism

9.4 Overloading Member Function

9.5 Overloading Non-Member Function

9.6 Virtual Function

9.7 Pure Virtual Function

9.8 Abstract Class

9.9 Restriction On Using Abstract Classes

9.10 Short Summary

9.11 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

173

Object Oriented Programming with C++ and Java

9.1 Snap shot

This chapter focuses on the implementation of the concept of polymorphism using
the keyword virtual. The emphasis is on how to realize the virtual functions; pure
virtual functions; virtual base classes in C++. The early binding and the late binding
of compilers are discussed.

9.2 Polymorphism

Object-oriented programming languages support polymorphism, which is
characterized by the phrase “one interface, multiple methods.” In simple terms,
polymorphism is the attribute that allows one interface to be used with a general
class of actions. The specific action selected is determined by the exact nature if the
situation.

Polymorphism helps reduce complexity by allowing the same interface to be used to
specify a general class of actions. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, don’t need to
make this selection manually. You need only remember and utilize the general
interface.

The first object-oriented programming languages were interpreters, so compiled
language. Therefore, in C++, both run-time and compile-time polymorphism is
supported.

Polymorphism is another important OOP concept. Polymorphism means the ability
to take more than one form. For example, an operation may exhibit different
behavior in different instances. The behavior depends upon the types of data used in
the operation. For example, consider the operation of addition. For two numbers, the
operation will generate a sum. If the operands were strings, then the operation
would produce a third string by concatenation. Fig 1.9 illustrates that a single
function name can be used to handle different number and different types of
arguments. This is something similar to a particular word having several different
meanings depending on the context.

Polymorphism plays an important role in allowing objects having different internal
structures to share the same external interface. This means that a general class of
operations may be accessed in the same manner even though specific actions
associated with each operation may differ. Polymorphism is extensively used in
implementing inheritance.

9.3 Types of Polymorphism

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 174

Polymorphism

There are two types of polymorphism

1. Function

2. Operator

 Function Overloading

Function polymorphism is a neat C++ addition to C’s capabilities. While default
arguments let you call the same function using varying numbers of arguments,
function polymorphism, also called function overloading , lets you use multiple
functions sharing the same name. The word “polymorphism” means having many
forms, so, function polymorphism lets a function have many forms. Similarly, the
expression “function overloading “ means you can attach more than one function to
the same name, thus overloading the name. Both expressions boil down to the same
thing, but we will usually use the expression function overloading ,it sounds harder
working. You can use function overloading to design a family of functions that do
essentially the same thing, but using different argument lists.

Overloaded functions are analogous to verbs having more than one meaning. For
example, Miss Piggy can root at the ball park for the home team, and or she can root
in the soil for truffles. The context (one hopes) tells you which meaning of roots is
intended in each case. Similarly , C++ uses the context to decide which version of an
overloaded function is intended.

The key to function overloading is a function’s argument list, also called the function
signature. If two functions use the same number and types of arguments in the same
order, they have the same signature; the variable names don’t matter. C++ enables
you to define two functions by the same name provided that the functions have
different signatures. The signature can differ in the number of arguments or in the
type of arguments , or both. For example, you can define a set of print() functions
with the following prototypes:

void print(const char * str , int width); // #1
void print(double d, int width); // #2
void print(long l, int width); // #3
void print(const char * str); // #4

when you then use a print() function, the compiler matches your use to the prototype
that has the same signature:
print(“Pancakes”, 15); // use #1
print(“Syrup”); // use #5
print(1999.0, 10); // use #2

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

175

Object Oriented Programming with C++ and Java

print(1999,12); // use #4
print(1999L, 15); // use #3

For example, print(“Pancakes”, 15) uses a string and an integer as arguments, and
that matches prototype #1.

When you use overloaded functions, be sure you use the proper argument types in
the function call. For example , consider the following statements.

unsigned int year = 3210;
print(year, 6);

Which prototype does the print() call match here? It doesn’t match any of them!. A
lack of a matching prototype does not automatically rule out using one of the
functions, for c++ will try to use standard type conversions to force a match. If, say,
the only print() prototype were #2, the function call print(year, 6) would convert the
year value to type double. But in the code above there are three prototypes that take
a number as the first argument, providing three different choices for converting year.
Faced with this ambiguous situation, c++ rejects the function call as an error.

Some signatures that appear different from each other can’t coexist. For example,
consider these two prototypes:
double cube(double x);
double cube(double & x);

You might think this is a place you could use function overloading, for the function
signatures appear to be different . But consider things from the compiler’s
standpoint.
Suppose you have code like this:
cout <<cube (x);

The x argument matches both the double x prototype and the double &x prototype.
Thus , the compiler has no way of knowing which function to use. Therefore, to
avoid such confusion, when it checks function signatures, the compiler considers a
reference to a type and the type itself to be the same signature.

The function matching process does discriminate between const and non-const
varibles. Consider the following prototypes:
void dribble (char * bits); //overloaded
void dribble (const char *cbits); //overloaded
void dabble (char * bits); //not overloaded
void drivel (const char *bits); //not overloaded

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 176

Polymorphism

Here’s what various function calls would match:
const char p1[20] = “How is the weather?”
char p2[20] = “How is business ?”
dribble (p1); // dribble (const char *);
dribble (p2); // dribble (char *);
dabble(p1) ; // no match
dabble(p2); // dabble (char *);
drivel (p1); // drivel(const char *);
drivel(p2); // drivel(const char *);

The dribble() function has two prototypes, one for const pointer and one for regular
pointers, and the compiler selects one or the other depending on whether or not the
actual arguments , but the drivel() function matches calls with either const or non-
const arguments . The reason for this difference in behavior between drivel() and
dabble() is that it’s valid to assign a non-const value to a const variable , but not vice
versa.

Keep in mind that it’s the signature, not the function type, that enables function
overloading . For example, the following two declarations are incompatible.

Therefore , C++ won’t permit you to overload grounk() in this fashion. You can have
different return types, but only if the signatures also are different.
long grounk(int n, float m);
double grounk(float n, float m);

Operator Overloading

Operator Overloading is another example of C++ polymorphism. Operator
overloading extends the overloading concept to operators, letting you assign
multiple meanings to C++ operators. Actually, many C++ (and C) operators already
are overloaded . For example, the * operator , when applied to an address , yields the
value stored at that address. But applying * to two numbers yield the product of the
values. C++ uses the number and type of operands to decide which action to take.

C++ lets you extend operator overloading to user-defined types, permitting you ,
say, to use the + symbol to add two objects. Again, the compiler will use the number
and type of operands to determine which definition of addition to use. Overloaded
operators often can make code look more natural. For example, a common
computing task is adding two arrays. Usually , this winds up looking like the
following for loop:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

177

Object Oriented Programming with C++ and Java

For (int i=0; i< 20; i++)
evening [i] = sam[i] + janet[i] // add element by element
But in C++ , you can define a class that represents arrays and that overloads the +
operator so that you can do this:
evening = sam + janet; // add two array objects.

This simple addition notation conceals the mechanics and emphasizes what is
essential, and that is another OOP goal.
To overload an operator, you use a special function form called an operator function.
An operator function has the form:
operatorop(argument-list)

Where op is the symbol for the operator being overloaded. That is, operator+()
overloads the + operator (op is +) and operator* () overloads the * operator (op is*) .
The op has to be a valid C++ operator ; you can’t just make up a new symbol. For
example, you can’t have an Operator @ () function because C++ has no @ operator.
But the operator[]() function would overload the [] operator because [] is the
array-indexing operator. Suppose , for example, that you have a Salesperson class for
which you define an operator+() member function to overload the + operator so that
it adds sales figures of one salesperson object to another. Then, if district2, sid and
sara all are objects of the Salesperson class , you can write this equation.
district2 = sid. Operator+(sara) ;

The function will then use the sid object implicity (because it invoked the method)
and the sara object explicitly (because it is passed as an argument) to calculate the
sum, which it then returns. Of course, the nice part is that you can use the nifty +
operator notation instead of the clunky function notation.

C++ imposes some restrictions on operator overloading, but they are easier to
understand after you have seen how overloading works.

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in
response to the call. Dynamic binding means that the code associated with a given
procedure call is not known until the time of the call at run-time. It is associated with
polymorphism and inheritance. A function call associated with a polymorph
reference depends on the dynamic type of that reference.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 178

Polymorphism

9.4 Overloading Member Functions

Aside from performing the special role of initialization, constructor functions are no
different from other types of functions. This includes overloading. In fact, it is very
common to find overloaded constructor functions. For example, consider the
following program, which creates a class called date that holds a calendar date.
Notice that the constructor is overloaded two ways.

#include<iostream.h>
#include<stdio.h>

class date
{
 int day.month,year;
public:
date(char *d);
date(int m,int d,int y);
void show_date();
};

date::date(char *d)
{

scanf(d,”%d%*c%d%*c%d”,&month,&day,&year);
}

date::date(int m,int d,int y)
{
 day=d;
month=m;
year=y;
}

void date::show_date()
{
 cout << month <<”/” <<day;
 cout <<”/” << year <<”\n”;
}

main()
{
 date ob1(12,4,96),ob2(“10/22/97”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

179

Object Oriented Programming with C++ and Java

ob1.show_date();
ob2,show_date();
return 0;
}

in this program, you can initialize an object of type date, either by specifying the date
using three digits to represent the month, day and year, or by using a string that
contains the date in this general form:

 mm/dd/yy

the most common reason to overload a constructor is to allow an object to be created
by using the most appropriate and natural means for each circumstance. For
example, in the following main(), the user is prompted for the date, which is input to
arrays. This string can then be used directly to created. There is no need for it to be
converted to any other form. However, if date() were not overloaded to accept the
string form, you would have to manually convert it into three integers each time you
created an object.

main()
{
 char s[80];
cout <<”Enter new date :”;
cin >> s;
date d(s);
d.show_date();
return 0;
}

in another situation, initializing an object of type date by using three integers may be
more convenient. For example, if the date is generated by some sort of computational
method, then creating a date object using date(iny,int,int) is the most natural and
appropriate constructor to employ. The point here is that by overloading date’s and
ease of use are especially important if you are creating class libraries that will be used
by other programmers.

9.5 Overloading Non-member Function

Friend functions play a very important role in operator overloading by providing the
flexibility denied by the member functions of a class. They allow overloading of
stream operators (<< or >>) for stream computation on user defined data types. The
only difference between a friend function and member function is that, the friend
function requires the arguments to be explicitly passed to the function and processes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 180

Polymorphism

them explicitly, whereas the member function considers the first argument implicitly.
Friend functions can either be used with unary of binary operators. The syntax of
operator overloading with friend functions is shown below

Friend return type operator symbol(arg1 [arg2])
{

 // body of operator friend function
}

 Guidelines

It is essential to follow syntax and semantic rules of the language while extending the

power of C++ using operator overloading. In fact, operator overloading feature

opens up a vast vistas of opportunities for creative programmers. The following are

some guidelines that needs to be kept in mind while overloading any operators to

support user defined data types:

 Retain meaning

Overloading operators must perform operations similar to those defined for

primitive/basic datatypes. The operator + can be overloaded to perform subtraction;

operator * can be overloaded to perform division operation. However, such

definitions should be avoided to retain the initiative meaning of the operators. For

example, the overloaded operator +() function operating on user-defined data-items

must retain a meaning similar to addition. The operator + could perform the union

operation on set data type, concatenation on string data type, etc.

 Retain syntax

The syntactic characteristics and operator hierarchy cannot be changed by
overloading. Therefore, overloaded operators must be used in the same way they for
basic datatypes. For example, if c1 and c2 are the objects of complex class, the
arithmetic assignment operator in the statement c1 +=c2;

Sets c1 to the sum of c1 and c2. The overloaded version of any operator should do
something analogous to the standard definition of the language. The above statement
should perform an operation similar to the statement
C1=c1+c2;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

181

Object Oriented Programming with C++ and Java

 Use functions when Appropriate

An operator must not be overloaded if it does not perform the obvious operation. It
should not demand the user effort in order to identify the actual operation
performed by the operator. The main aim of overloading is to make the program
code more readable. If the meaning of an operation to be performed by the
overloaded operator is unpredictable or doubtful to the user, it is advisable to use a
more descriptive and meaningful function name.

 Avoid ambiguity

The existence of multiple data conversion routines performing the same operations,
places the compiler in an ambiguous state. It does not know which one to select for
conversion. For instance, existence of a one-argument constructor in the destination
object’s class and operator function also in the source object’s class performing the
same conversion function, confuses the compiler; it does not know which one to
select and issues and error messages. Therefore, avoid defining multiple routines
performing the same operation, which become ambiguous during compilation.

All operators cannot be overloaded

C++ supports a wide variety of operators, but all of them cannot be overloaded to
operate in an analogous way on standard operators. These excluded operators are
very few compared to the large number of operators, which qualify for overloading.

Operator Category Operators

Member access: (dot operator)
Scope resolution : (global access)
Conditional ?: (conditional statement)
Pointer to member *
Size of data type sizeof(..)

An operator such as?: has an inherent meaning and it requires three arguments. C++
does not support the overloading of an operator, which operates on three operands.
Hence, the conditional operator, which is the only ternary operator in the C++
language, cannot be overloaded.

Early Binding

Choosing a function in normal way, during compilation time is called as early
binding or static binding. During compilation time the C++ compiler determines

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 182

Polymorphism

which function is used based on the parameters passed to the function or the
function's return type. The compiler than substitutes the correct function for each
invocation. Such compiler based substitution are called static linkage. By default
C++ follows early binding.

9.6 Virtual Function

A virtual function is one that does not really exist but it appears real in some parts of
a program.

Virtual functions are advanced features of the object oriented programming concept
and they are not necessary for each C++ program.

 The general form of virtual function is
 Class user_defined_name
 {
 private:

 public:
 virtual return_type function_name(argruments);
 virtual return_type function_name(argruments);
 virtual return_type function_name(argruments);

 };

To make a member virtual, the key word virtual is used in the methods while it is
declared in the class definition but not in the member function definition. The
keyword virtual should be preceded by a return type of the function name. The
compiler gets information from the keyboard virtual that it is a virtual functions and
not a conventional function declaration.
Example:
 Class Sample
 {
 private:
 int x;
 int y;
 public:
 virtual void display ();
 virtual int sum ();
 };

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

183

Object Oriented Programming with C++ and Java

1. The keyword virtual should not be repeated in the definition if the definition
occurs outside the class declaration

2. A virtual function cannot be a static member because a virtual member is always
a member of a particular object in a class rather than a member of the class as a
whole.

3. A virtual function cannot have a constructor member function but it can have the
destructor member functions

4. A destructor member function does not take any argument and no return type
can be specified for it not even void

5. It is an error to redefine a virtual method with a change of return data type in the
derived class with the same parameter types as those of a virtual method in the
base class.

6. Only a member function of a class can be declared as virtual. It is an error to
declare a non member function of a class virtual.

// virtual function demonstration
// array of pointers
include<iostream.h>
class baseA
{
 public:
 virtual void display (){
 cout<< "one\n";
 }
};
class derivedB : public baseA
{
 public:
 virtual void display ()
 {
 cout<<"two\n";
 }
};
class derived C : public derivedB
{
 public:
 virtual void display ()
 {
 cout<<"three \n";
 }
};
void main()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 184

Polymorphism

{
 baseA obja;
 derivedB objb;
 derivedC objc;
 baseA *ptr[3];
 ptr[0] = &obja;
 ptr[1] = &objb;
 ptr[2] = &objc;
 for(int i = 0; i <= 2; i++)
 ptr[i] -> display ();
}

output of the above program is
one
two
three

Virtual functions with inline code substitution

Virtual functions can be declared as an inline code, being the run time binding of the
computer. The inline code does not affect much of the programming efficiency. The
compiler must get information about the functions, like from where they have to be
invoked.
The general form is:
 Class base
 {
 private:
 //data;
 public:
 virtual inline return_type function_name(argruments);
 virtual inline return_type function_name(argruments);
 };

// demonstration of inline code with virtual function
include<iostream.h>
class base
{
 private:
 int x;
 float y;
 public:
 virtual inline void getdata();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

185

Object Oriented Programming with C++ and Java

 virtual inline void display();
};
class derivedB : public base
{
 private:
 int rollno;
 char name[20];
 public:
 void getdata ();
 void display ();
};
void base :: getdata ()
{
 cout <<"enter an integer \n";
 cin>> x;
 cout<<"enter a real number \n";
 cin<< y;
}
void base :: display()
{
 cout<<" entered numbers are x = "<< x << "and y = " << y;
 cout<< endl;
}
void derivedB :: getdata ()
{
 cout <<"enter roll number of a student \n";
 cin >> rollno;
 cout<< "enter name of a student \n";
 cin>> name;
}
void derivedB :: display ()
{
 cout << "roll number student's name \n";
 cout << roll no << '\t' << name << endl;
}
void main ()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr-> getdata ();
 ptr -> display ();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 186

Polymorphism

}

Output of the above program is

Enter roll number of a student
89001
enter name of a student
ganapathy

rollnumber student's name
89001 ganapathy

 9.7 Pure Virtual Function

A pure virtual function is a type of function which has only a function declaration. It
does not have the function definition. The following program illustrates how to
declare a pure virtual function
// pure virtual function
include<iostream.h>
class base
{
 private:
 int x;
 float y;
 public:
 virtual void getdata();
 virtual void display();
};
class derivedB : public base
{
 private:
 int rollno;
 char name[20];
 public:
 void getdata ();
 void display ();
};
void base :: getdata ()
{
}
void base :: display()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

187

Object Oriented Programming with C++ and Java

{
}
void derivedB :: getdata ()
{
 cout <<"enter roll number of a student \n";
 cin >> rollno;
 cout<< "enter name of a student \n";
 cin>> name;
}
void derivedB :: display ()
{
 cout << "roll number student's name \n";
 cout << roll no << '\t' << name << endl;
}
void main ()
{
 base *ptr;
 derivedB obj;
 ptr = &obj;
 ptr-> getdata ();
 ptr -> display ();
}

Output of the above program is

Enter roll number of a student
89001
enter name of a student
ganapathy
rollnumber student's name
89001 ganapathy

9.8 Abstract Class

An abstract class is one that is not used to create objects. An abstract class is designed
only to act as a base class (to be inherited by other classes). It is design concept in
program development and provides a base upon which other classes may be built. In
the previous example, the student class is an abstract class since it was not used to
create any objects.

9.9 Restrictions on Using Abstract Classes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 188

Polymorphism

 Abstract classes cannot be used for:

 Variables or member data
 Argument types
 Function return types
 Types of explicit conversions

Another restriction is that if the constructor for an abstract class calls a pure virtual
function, either directly or indirectly, the result is undefined. However, constructors
and destructors for abstract classes can call other member functions.

Pure virtual functions can be defined for abstract classes, but they can be called
directly only by using the syntax:

abstract-class-name :: function-name()

This helps when designing class hierarchies whose base class(es) include pure virtual
destructors, because base class destructors are always called in the process of
destroying an object. Consider the following example:
#include <iostream.h>

// Declare an abstract base class with a pure virtual destructor.
class base
{
public:
 base() {}
 virtual ~base()=0;
};

// Provide a definition for destructor.
base::~base()
{
}
class derived:public base
{
public:
 derived() {}
 ~derived(){}
};
void main()
{
 derived *pDerived = new derived;

 delete pDerived;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

189

Object Oriented Programming with C++ and Java

}
When the object pointed to by pDerived is deleted, the destructor for class derived is
called and then the destructor for class base is called. The empty implementation for
the pure virtual function ensures that at least some implementation exists for the
function.

Note In the preceding example, the pure virtual function base::~base is called
implicitly from derived::~derived. It is also possible to call pure virtual functions
explicitly using a fully qualified member-function name.

9.10 Short Summary

 Polymorphism means many form

 Static binding is possible in polymorphism

 Virtual function is one that does not exist really

 Virtual functions are advanced feature of OOP

 Late binding is nothing but dynamic binding

 Inline can also be given with virtual function

9.11 Brain Storm

1. What is polymorphism?

2. List the pros and cons of using polymorphism in OOP

3. Explain the concept of static binding.

4. What is a virtual function?

5. What are the syntactic rules to be observed while defining the virtual function?

6. Explain how the virtual base class is different from the conventional base

classes of the OOP

7. Explain the syntactic rules for virtual base class in C++.

8. What is an abstract base class?

9. Explain dynamic binding.

10. What are the various techniques of defining pure virtual functions?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 190

Java Architecture

Lecture - 10

Java Architecture

Objectives

In this lecture you will learn the following

 Knowing the features of Java

 JDK

 Java Architecture

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

191

Object Oriented Programming with C++ and Java

Lecture – 10

10.1 Snap Shot

10.2 Features of Java

10.3 Java Development Kit

10.4 Java Architecture

10.5 Short Summary

10.6 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 192

Java Architecture

10.1 Snap Shot

This chapter gives you a detailed account on the features of java. Java is a general
purpose, object-oriented programming language developed by Sun Microsystems of
USA in 1991. Originally called as Oak by James Gosling, one of the inventors of the
language, Java was designed for the development of software for consumer
electronic devices like VCRs, TVs, toasters and such other electronic machines. The
goal had a stron impact on the development team to make the language simple,
portable and highly reliable. The java development kit is very much useful for
developing application and applet programming.

10.2 Features of Java

Sun Microsystems officially describes Java with the following features:

♣ Compiled and interpreted

♣ Platform-Independent and Portable

♣ Object-Oriented

♣ Robust and Secure

♣ Distributed

♣ Familiar, Simple and Small

♣ Multithreaded and Interactive

♣ High Performance

♣ Dynamic and Extensible

The above mentioned features made Java the first application language of the World
Wide Web.

Compiled and interpreted

Normally any language uses either compiler or interpreter to execute a program. But
Java has both compiler and interpreter. So, Java is called as a two stage system. Java
compiler first translates its source program into its byte code instructions. Byte codes
are not machine instructions and therefore, in the second stage, Java interpreter
generates machine code that can be directly executed by the machine. We can thus
say that Java is compiled and interpreted.

Platform-Independent and Portable

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

193

Object Oriented Programming with C++ and Java

Java programs can be easily moved from one computer to another, anywhere and
anytime. Changes and upgrades in operating systems, processors and system
resources will not force any changes in Java programs. This is the reason that Java
has become popular in Internet. We can download a Java applet from a remote
computer onto our local system via internet and execute it locally.

Java ensures portability in two ways. First, Java compiler generates bytecode
instruction that can be implemented on any machine. Secondly, the size of the
primitive data types are machine independent.

Object-Oriented

Java is a true object-oriented language. Almost everything in Java is an object. All
the data and program codes reside within the classes and objects. Java comes with
an extensive set of classes, arranged in packages, that we can use in our programs by
inheritance.

Robust and Secure

Java is a robust language. It has strict compile time and run time checking for data
types. It is designed as a garbage-collected language relieving the programmers
virtually all memory management problems. Java also incorporates the concept of
exception handling which captures series errors and eliminates any risk of crashing
the system.

Security becomes an important issue for a language that is used for programming for
internet. Java systems not only verify memory access but also ensure that no viruses
are communicated with an applet. The absence of pointers in Java ensures that
programs cannot gain access to memory locations without proper authorization.

Distributed

Java is designed as a distributed language for creating applications on networks. It
has the ability to share both data and programs. Java applications can open and
access remote objects on Internet as easily as they can do in a local system. This
enables multiple programmers at multiple remote locations to collaborate and work
together on a single project.

Simple, Small and Familiar

Java is a small and simple language. Java does not use pointers, preprocessor header
files, goto statements and many others. It also eliminates operator overloading and
multiple inheritance. Java uses many constructs of C and C++ and therefore, Java
code "looks like a C++" code.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 194

Java Architecture

Multithreaded and Interactive

Multithreaded means handling multiple tasks simultaneously. Java supports

multithreaded programs. This means that we need not wait for the application to

finish one task before beginning another. For example, we can see any motion

picture, and at the same time we can download any picture from remote computer.

This feature greatly improves the interactive performance of graphical applications.

High performance

Java performance is impressive for an interpreted language, mainly due to the use of
intermediate byte code. Java architecture is also designed to reduce overheads
during runtime. Further, the incorporation of multithreading enhances the overall
execution speed of Java program.

Dynamic and Extensible

Java is a dynamic language. Java is capable of dynamically linking in new class
libraries, methods and object. Java can also determine the type of class through a
query, making it possible to either dynamically link or abort the program, depending
on the response.

Functions written in C and C++ can be used in Java. These methods are called as

native methods. This facility enables the programmers to use the efficient functions

available in these languages. Native methods are linked dynamically at run time.

10.3 Java Development Kit

Java Development Kit comes with a collection of tools that are used for developing
and running Java programs. They are:

a. appletviewer
b. javac
c. java
d. javap
e. javah
f. javadoc
g. jdb

Appletviewer Enables us to run java applets(without using java enabled

web browser)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

195

Object Oriented Programming with C++ and Java

Javac The Java compiler, which translates Java sourcecode to
bytecode files that the interpreter can understand

Java Java interpreter, which runs applets and applications by
reading and interpreting bytecode files

Javadoc Creates HTML-format documentation from Java source code
files

Javah Produces header files for use with native methods

Javap Java disassdembler, which enables us to convert bytecode files
into a program description

Jdb Java debugger, which helps us to find errors in our
 programs

10.4 Java Architecture

Java’s strength comes from its unique architecture. The designers of Java needed a
language that was, above all, simple for the programmer to use. Yet in order to
create reliable network applications, Java needed to be able to run securely over a
network and, at the same time, work on a wide range of platform. Java fulfills all of
these goals and more. The next few sections describe how Java works and how the
features are that make Java a powerful network application development tool.

How Java Works

As with many other programming language, Java uses a compiler to convert human

readable source code into executable programs. Traditional compilers produce code

that can be executed by specific hardware . for example a Window 95 C++ compiler

crates executable programs that work with intel x 86 compatible processors. In

contrast, the Java compiler generates architecture independent byte codes. The byte

codes can be executed by only a Java Virtual Machine (VM) which is an idealized

Java architecture, usually implemented in software rather than hardware.

The compilation process is illustrated in Figure 1.4 java bytecode files are called class

files because they contain a signal Java class. Classes will be described in detail in

Chapter 3. For now, just think of a class as representing a group of related routines

or an extended datatype. The vast majority of Java majority of Java programs will be

composed of more than one class file.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 196

Java Architecture

 GraphicWindow.java
 GraphWindow.class

 import java.awg.frame; CA FE BA BE 00

 class GraphWindow Java Compiler 03 00 2D
 extends Frame {

To execute java bytecodes, the VM uses a class loader to fetch the bytecodes from a

disk or a network . Each class file is fed to a bytecode verifier that ensures the class is

formatted correctly and will not corrupt memory when it is executed. The bytecode

verification phase adds to the time it takes to load a class, but it actually allows the

program to run faster because the class verification is performed only once, not

continuously as the program runs.

The execution unit of the VM carries out the instructions specified in the bytecodes.
The simplest execution unit is an interpreter, which is a program that reads the
bytecodes. interprets their meaning, and then performs the associated function.
Interpreters are generally much slower than native code compilers because they
continuously need to look up the meaning of each bytecode during execution.

Fortunately, there is an elegant alternative to interpreting code, called just in time
(JIT)

Compilation

The JIT compiler converts the bytecodes to native code instructions on the user’s
machine immediately before execution. Traditional native code compilers run on
the developer’s machine, are used by programmers, and produce nonprotable
executables. JIT compilers run on the user’s machine and are transparent to the user,
the resulting native code instructions do not need to be ported because they are
already at their destination. In the example both a Macintosh and Windows PC
receive identical bytecodes, and each client performs a local JIT compilation.

Java-Enabled Browsers

A java-enabled Web browser contains its own NM. web documents with embedded

java applets must specify the location of the main applet class file. The web browser

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

197

Object Oriented Programming with C++ and Java

then starts up the VM and passes the location of the applet class file to the class

loader. Each class file knows the names of any additional class files that it requires.

These additional class files may come from the network or from the client machine.

this may require the class loader to make a number of additional class-loading

operations before the applet starts. Note that supplemental classes are fetched only if

they are actually going to be used or if they are necessary for the verification process

of the applet.

After loading the class file, execution begins, and the applet is asked to draw itself in

the browser window.

10.5 Short Summary

 Normally any language uses either compiler or interpreter to execute a
program. But Java has both compiler and interpreter. So, Java is called as a two
stage system.

 Java programs can be easily moved from one computer to another, anywhere

and anytime.

 Java is designed as a distributed language for creating applications on
networks.

 Functions written in C and C++ can be used in Java. These methods are called

as native methods.

 Java Development Kit comes with a collection of tools that are used for
developing and running Java programs.

10.6 Brain Storm

 Why is Java known as platform -neutral language?

 How is Java more secured than other language?

 List the features of Java.

 Describe the structure of a typical Java program.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 198

Elements of Java

Lecture - 11

Elements of Java

Objectives

In this lecture you will learn the following

 Knowing about Data types

 Understanding the concept of operators

 Shows how to create an array

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

199

Object Oriented Programming with C++ and Java

Lecture - 11

11.1 Snap Shot

11.2 Data Types

11.3 Operators

11.4 Control Structures

11.5 Arrays

11.6 Command line Arguments

11.7 Short Summary

11.8 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 200

Elements of Java

11.1 Snap Shot

In this lecture you will learn about various Data types, Operators, Arrays, Control
Structures and about Command line Argument.

11.2 Data types

 Java is a strongly typed language

It is important to state at the outset that Java is a strongly typed language indeed, part
of Java’s safety and robustness comes from this fact.

1. Every variable has a type, every expression has a type, and every type is strictly

defined.

2. Second, all assignments, whether explicit or via parameter passing in method

calls, are checked for type compatibility. There are no automatic coercion or
conversions of conflicting types as in some languages.

The Java compiler checks all expressions and parameters to ensure that the types are
compatible. Any type mismatches are errors that must be forested before the compiler
will finish compiling the class.

 The Simple Types

Java defines eight simple (or elemental) types of data: byte, short int, long, char,
floats, Double, and Boolean. These can be put in four groups.

• Integers This group includes Byte, short, int and long, which are for whole

valued singed numbers.
• Floating point numbers This group includes float and double which represent

numbers with fractional precision.
• Characters This group includes char, which represents symbols in a character set,

like letters and numbers.
• Boolean This group includes boolean, which is a special type for representing

true/false values.

You can use these types as-is, or to construct arrays your own class types. Thus, they
form the basis for all other types of data that you can create.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

201

Object Oriented Programming with C++ and Java

The simple types represent single values not complex objects. Although Java is
otherwise completely object oriented, the simple types are not. They are analogous to
the simple types found in most other non-object-oriented language. The reason for
this is efficiency. Making the simple types into objects would have degraded
performance too much.

The simple types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the
dictates of the execution environment. However, Java is different. Because of Java’s
portability requirement, all data types have a strictly defined range. For example, an
int is always 32 bits, regardless of the particular platform. This allows programs to be
written that are guaranteed to run without porting on any machine architecture. While
environments, it is necessary in order to achieve portability.

Let’s look at each type of data in turn.

 Integers

Java defines four integer types. Byte, short, int, and long. All of these are signed,
positive and negative values. Java does not support unsigned, positive only integers.
Many other computer languages, including C/C++, support both singed and
unsigned integers. However, Java’s designers felt that unsigned integers were
unnecessary. Specifically, they felt that the concept of unsigned was used mostly to
specify the behavior of the high order bit, which defined the sign of an int when
depressed as a number. Java manages the meaning of the high order bit differently,
by adding a special “unsigned right shift” operator. Thus, the need for an unsigned
integer type was eliminated.

The width of an integer type should not be though of as the amount of storage it
consumes, but rather as the behavior it defines for variables and expressions of that
type. The Java run time environment is free to use whatever size it wants, as long as
the types behave as you devalued them. In fact, at least one implementation stores
bytes and shorts as 32 bits (rather than 8 and 16 bit) values to improve performance,
because that is the word size of most computers currently in use.

The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range
long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
int 32 -2,147,483,648, to 2,147,483,647
short 16 -32,768, to 32,767
byte 8 - 128 to 127

 Let’s look at each type of integer.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 202

Elements of Java

Byte

The smallest integer type is byte. This is a signed 8 bit type that has a range from 128
to 127, Variables of types byte are especially useful when you’re working with a
stream of data from a network or file. They are also useful when you’re other built in
types.

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

Short

short is a signed 16-bit type. It has a range from 32,768 to 32,767. It is probably the
least used Java type, since it is defined as having its high byte first (*called big endian
format). This type is mostly applicable to 16 bit computers, which are becoming
increasingly scarce.

Here are some examples of short variable declarations:
short s;
short t;

 int

The most commonly used integer type is int. It is a signed 32-bit type that has range
from 2,147,483,648, to 2,147,483,647. In addition to other uses, variables of type in are
commonly employed involving bytes, shorts ints, and literal numbers the entire
expression is promoted to int before the calculation is done.
The int type is the most versatile and efficient type, and it should be used most of the
time when you want to create a number for counting or indexing arrays or doing
integer math. It may seem that using short or byte will save space, but there is no
guarantee that Java won’t promote those types to int internally anyway. Remember,
type determines behavior, not size. (The only exception, is arrays, where byte, is
guaranteed to use only one byte per array element, short will use two bytes, and int
will use four).

Long

Long is a signed 64 bit type and is useful for those occasions where an int type is not
large enough to hold the desired value. The range of a long is quite large. This makes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

203

Object Oriented Programming with C++ and Java

it useful when bit, whole numbers are needed. For example, here is a program that
computes the number of miles that lights will travel in a specified number of days.

// Compute distance light travels using long variables.
Class Light {
Public static void main (staring args []) {
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;
days = 1000; // specify number of days here
second = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds ; // compute distance
System.out.print (“In” + days);
System.out.print (“days light will travel about”) ;
System.out.println (distance + “miles.”);

 }
}

This program generates the following output:
In 1000 days light will travel about 16070400000000 miles.
Clearly the result could not have been held in an int variable.
Floating-Point Types

Floating point numbers, also known as real numbers are used when evaluating
expression that require fractional precision. For example, calculation such as square
root, or transcendentals such as sine and cosine, result in value whose precision
requires a floating-point type. Java implements the standard (IEEE-754) set of
floating point types an operator. There are two kinds of floating point types, float
and double, which represent single and double precision numbers, respectively.
Their width and ranges are shown here :

 Name Width in Bits Range

Double 64 1.7e-308 t 1.7e+308
 Float 32 3.4e-038 to 3.4e+038

Each of these floating point types is examined next.
Float

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 204

Elements of Java

The type float specifies a single precision value that uses 32 - bits of storage. Single
precision is faster on some processors and takes half as much space as double
precision, but will become imprecise when the values are either very large or very
small. Variables of type float are useful when you need a fractional component, but
don’t’ require a large degree of precision. For example, float can be useful when
representing dollars and cents.

Here are some example float variable declarations:
Float hightemp, lowtemp;

Double

Double precision, as denoted by the double keyword, uses 64 bits to store a value.
Double precision is actually faster than single precision on some modern processors
that have been optimized for high speed mathematical calculations. All
transcendental math functions, such as sin(), cos() , and sqrt(), return double values.
When you need to maintain accuracy over many interative calculations, or are
manipulating large values numbers, double is the best choice.
Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle .
class Area {

public static void main (string args []) {
double pi, r, a ;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a = pi * r * r; // compute area
system.out.println (“Area of circle is” a) ;

 }
 }

Characters

In Java, the data type used to store characters is char. However, C/C++
programmers beware: char in Java is not the same as char in C or C++ . In C/C++
char is an integer type that is 8 bits wide. This is not the case in Java. Instead, Java
uses Unicode to represent characerts. Unicode defines a fully international character
set that can represent all of the characters found in all human languages. Thus, in
Java char is a 16 bit type. The range of a char is 0 to 65,536. There are negative chars.
The standard set of characters known as ASCII still ranges from 0 to 127 as always,
and the extended 8 bit character set, ISO-Latin-1,ranges from 0 to 255. Here is a
program that demonstrate char variables.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

205

Object Oriented Programming with C++ and Java

// Demonstrate char data type.
Class Chardemo {

public static void main (string args []) {
char ch1,ch2;

ch1=88; // code for X
Ch2 = ‘Y’ ;
System.out.print (“ch1 and ch2 :”) ;
System.out.print1n(ch1 + “ “ + ch2);

 }
}

This program displays the following output;

ch1 and ch2 : X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies that first
127 values in the Unicode character set. For this reason, all the “old tricks” that you
have used with characters in the past will work in Java, too.

Even though chars are not integers, in many cases you can operate on them as if they
were integers. This allows you to add two characters together, or to increment the
value of a character variable. For example, consider the following program.

// char variables behave like integers.
class chardemo2
public static void main (string args []) {
char ch1
ch1= ‘X’;
System.out.print1n (“ch1 contains” +ch1);

ch1++; // increment ch1
System.out.print1n(“ch1 is now” + ch1);
 }
}

The output generated by this program is shown here.

ch1 contains X
ch1 is now Y

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 206

Elements of Java

In the program, ch1 is first given the value X. Next, ch1 is incremented. This
results in ch1 containing Y, the next character in the ASCII (and Unicode) sequence.

Boolean

Java has a simple type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operations,
such as a<b. Boolean is also the type by the conditional expressions that given the
control statements such as if and for.

// Demostrate boolean values.
class booltest {
public static void main (string args []) {
boolean b;
b=false;
System.out.print1n(“b is + b) ;
b=true;
System.out.print1n (“b is” + b);

// a boolean value can control the if statement
if (b) system.out.print1n(“This is executed.”);

b=false;
if(b) system.out.print1n(“This is not executed.”);
// outcome of a relational operator is a boolean value
System.out.print1n (“10>9 is” +(10>9));

 }
 }

The output generated by this program is shown here:

B is false
B is true
This is executed.
10> 9 is true

There are three interesting things to notice about this program. First, as you can see,
when a Boolean value is output by print1n (), “true” or “false” is displayed.
Second, the value of a Boolean variable is sufficient, by itself, to control the if
statement. There is no need to write an if statement like this:

If(b= =true) ….

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

207

Object Oriented Programming with C++ and Java

Third, the outcome of a relational operator, such as <, is a boolean value. This is why
expression 10>9 displays the value “true”. Further, the extra set of parentheses
around 10>9 is necessary because the + operator has a higher precedence than the>.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any
whole number value is an integer literal. Examples are 1,2,3, and 42. These are all
decimal values, meaning they are describing a base 10 numbers. However, to specify
a long literal, you will need to explicitly tell the compiler that the literal value is of
type long. You do this by appending an upper-or lowercase L to the literal. For
example, 0x7fffffffffffffffL or 9223372036854775807L is the largest long.

Floating-Point Literals

Floating-point numbers represented decimal values with a fractional component. For
example 2.0,3.14and etc. represent valid standard-notation floating-point numbers.
Scientific notation uses a standard-notation, floating-point number plus a suffix that
specifies power of 10 by which the number is to be multiplied. The exponent is
indicated by an E or e followed by a decimal number.

Boolean Literals

Boolean Literals are simple. There are only two logical values that a boolean value
can have, true and false. The true literal in Java does not equal 1, nor does the false
literal equal 0. In Java, they can only be assigned to variables declared as boolean, or
used in expressions with boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16 bit values
that can be converted into integers and manipulated with the integer operators, such
as the addition and subtraction operators. Literal characters can be directly entered
inside the quotes. All of the visible ASCII characters can be directly entered inside
the quotes, such as ‘a’, ‘z’, and ‘@’.

The following tables shows the character escape sequence.

Escape Sequence Description

\ddd
\uxxxx

Octal character (ddd)
Hexadecimal UNICODE character (xxxx)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 208

Elements of Java

\’
\”
\ \
\ r
\n
\f
\t
\b

Single quote
Double quote
Backslash
Carriage return
New line (also known as line feed)
Form feed
Tab
Backspace

Character Escape Sequence

String Literals

String literals in Java are specified like they are in most other languages by enclosing
a sequence of characters between a pair of double quotes. Examples of string literals
are

“Hello world”
“two\nlines”
“\ “this is in quotes\””

The escape sequences and octal/hexadecimal notations that were defined for
character literals work the same way inside of string literals. One important thing to
note about Java strings is that they must begin and end on the same line. There is no
line continuation escape sequence as there is in other languages.

Variables

The variable is the basic unit of storage in Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all
variables have a scope, which defines their visibility, and lifetime. These elements are
examined next.
Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a
variable declaration is shown here:

Type identifier [=value] [identifier [=vaule] ….];
The type is one of Java’s atomic types, or name of a class or interface. The identifier

is the name of the variable. You can initialize the variable by specifying an equal sign

and a value keep in mind that the initialization expression must result in a value of

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

209

Object Oriented Programming with C++ and Java

the same (or compatible) type as that specified for the variable. To declare more than

one variable of the specified type use a comma - separated list.

Here are several example of variable declarations of various types. Note that some
include an initialization.

 int a, b, c; // declares three ints, a, b, and c.

 int d =3, e, f = 5 // declares three more ints, initializing d and f

 byte z =22; // initializes z.

 double pi = 3.14159; // declare an approximation of pi

 char x =’x’; // the variable x has the value ‘x’.

The identifiers that you choose have nothing intrinsic in their names that indicates

their type. Many readers will remember when FORTRAN predefined all identifiers

from I through N to be of type INTEGER while all other identifiers were REAL . Java

allows any properly formed identifier to have any declared type.

11.3 Operators

Arithmetic Operators

Arithmetic operators are used in mathematical expression the same way that they
are used in algebra. The following table lists the arithmetic operators:

 Operator Result

 + Addition

 - Subtraction (also unary minus)
 * Multiplication
 / Division

 % Modulus
 ++ Increment
 += Addition assignment
 -= Subtraction assignment
 * = Multiplication assignment
 / = Division assignment
 % = Modulus assignment
 - - Decrement

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 210

Elements of Java

The operands of arithmetic operators must be of a numeric type. you cannot use
them on boolean types, but you can use them on char types, since the char type in
Java is, essentially , a subset of int.

// Demonstrate the basic arithmetic operators.
class basicMath {
public static void main (string args []) {
/ / arithmetic using integers
System.out.print1n (“Integer Arithmetic”)
int a = 1 + 1;
int b = a * 3;
int c = b / 4;
int d = c – a;
int e = -d ;

System.out.println (“a= “ +a);
System.out.println (“b =” + b);
System.out.println (“c=” + c);
System.out.println (“d =” + d);
System.out.println (“ e =” + e);

// arithmetic using doubles
System. out. println (“\no Floating Point Arithmetic”);
double da = 1 + 1;
double db = da * 3;
double dc = db / 4;
double dd = dc – a;
double de = - dd;

System.out.println (“da=” +da);
System.out.println (“db=” +db);
System.out.println (“dc=” +dc);
System.out.println (“dd=” + dd);
System.out.println (“de =” +de);

When you run this program, you will see the following output.

Integer Arithmetic
a= 2
b= 6
c=1
d = -1

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

211

Object Oriented Programming with C++ and Java

e = 1

Floating point Arithmetic
da = 2
db = 6
dc = 1.5
dd = -0.5
de = 0.5

Arithmetic Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation
with an assignment. As you probably know, statements like the following are quite
common in programming.

a = a + 4 ;

In java you can rewrite this statements as shown here:
a + = 4;
This version uses the + = assignment operator. Both statements perform the same
action they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a % = 2;

In this case, the % = obtains the remainder of a/2 and puts that result back into a.
There are assignment operators for all the arithmetic, binary operation. Thus, any
statement of the forms. The assignment operators provide two benefits. First, they
save you a bit of typing, because they are “shorthand” for their equivalent long
forms. Second , they are implemented more efficiently by the Java run time system
than are their equivalent long forms. For these reasons, you will often see the
assignment operators used in professionally written Java programs.

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand.
In the foregoing examples there is no difference between the prefix and postfix
forms.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 212

Elements of Java

In postfix form, the previous value is obtained for use in the expression, and then the
operand is modified. For example:

x = 42 ;
y = + + x ;

In this case, y is set to 43 as you would expect, because the increment occurs before x
is assigned to y. Thus, the line y = + + x; is the equivalent of these two statement.

x = x + 1;
y = x;

however, when written like this,

x=42;
y=x++;
The value of x is obtained before the increment operator is executed, so the value of y
is 42. Of course, in both cases x is set to 43. Here, the line y=x++; is the equivalent of
these two statements:

y=x;
x=x+1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
public static void main(String a[]);

int a=1;
int b=2;
int c,d;
c = ++b;
d = a++;
c++;
System.out.println(“a = ” +a);
System.out.println(“b = “ +b);
System.out.println(“c = “ +c);
System.out.println(“d = “ +d);
}

}

The output of this program follows

a=2

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

213

Object Oriented Programming with C++ and Java

b=3
c =4
d=1

The Bitwise Operators

Java defines several bitwise operators which can be applied to the integer types,
long, int, short, char, and byte. These operators act upon the individual bits of their
operands. They are summarized in the following table:

 Operator Result
 ~ Bitwise unary NOT
 & Bitwise AND
 | Bitwise OR
 ^ Bitwise exclusive OR
 >> Shift right
 >>> Shift zero fill
 << Shift left
 &= Bitwise AND assignment
 |= Bitwise OR assignment
 ^= Bitwise exclusive OR assignment
 >>= Shift right assignment
 >>>= Shift right zero fill assignment
 <<= Shift left assignment

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^ and ~. The following table shows the
outcome of each operation. In the discussion that follows, keep in mind that the
bitwise operators are applied to each individual bit within each operand.

A B A|B A&B A^B ~A
0 0 0 0 0 1
1 0 1 0 1 0
0 1 1 0 1 1
1 1 1 1 0 0

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits
of its operand. for example, the number 42, which has the following bit pattern;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 214

Elements of Java

 00101010
becomes
 11010101

after the NOT operator is applied.
The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is
produced in all other cases. here is an example:

 00101010 42
 &00001111 15

 00001010 10

The Bitwise OR

The OR operator, 1, combines bits such that if either of the bits in the operands is a
1, then the resultant bit is a 1, as shown here:

 00101010 42
 | 00001111 15

 00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the
result is 1. Otherwise, the result is zero. The following example shows the effect of
the ^. This example also demonstrates a useful attribute of the XOR operation. Notice
how the bit pattern of 42 is inverted whenever the second operand has a 1 bit.
Whenever the second operand has a 0 bit, the first operand is unchanged. you will
find this property useful when performing some types of bit manipulations.

 00101010 42
 ^00001111 15

00100101 37

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

215

Object Oriented Programming with C++ and Java

Relational Operators

The relational Operators determine the relationship that one operand has to the
other. Specifically, they determine equality and ordering. The relational operators are
shown here:

 Operator Result
 == Equal to
 != Not Equal to

> Greater than
 < Less than
>= Greater than or equal to

 <= Less than or equal to

The outcome of these operations is a Boolean value. The relational operators are
most frequently used in the expressions that control the if statement and the various
loop statements.

Assignment Operators

The assignment operator is the single equal sign, =. The assignment operator works
in java much as it does in any other computer language. It has this general form:

 var = expression;

here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. for example, consider
this fragment;

 int x, y, z;
 x=y=z=100; //set x, y, and z to 100

The ? operator

Java includes a special ternary operator that can replace certain types of if-then-else
statements. this operator is the ?, and it works in java much like it does in C and C++.
It can seem somewhat confusing at first, but the ? can be used very effectively once
mastered. The ? has this general form:
 expression1? expression1: expression2
Here,expression1 can be any expression that evaluates to a boolean value. if
expression1 is true, then expression2 evaluated; otherwise, expression3 is evaluated.
The result of the ? operation is that of the expression evaluated. Both expression2
and expression3 are required to return the same type, which can’t be void.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 216

Elements of Java

Here is an example of the way that the? is employed:

ratio = denom == 0 ? 0 : num/denom;

11.4 Control Structures

Control Statement

Java supports two selection statements if and Switch. These statements allow you to
control the flow of your program’s execution based upon conditions knows only
during run time. If your background in programming does not include C/C++ you
will be pleasantly surprised by the power and flexibility contained in these two
statements.

The if statement is Java’s conditional branch statement. It can be used to route
program execution through two different paths. Here is the general form of the if
statement .

 if (condition) statement1;
 else statment2;

Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block). The condition is any expression the returns a Boolean
value. The else clause is optional.

The if works like this. If the condition is true then statment1 is executed. Otherwise,
statement2 (if it exists) is executed. In no case will both statements be executed. For
example, consider the following.

 int a, b;
 / / ….
 if(a < b) a= 0;
 else b= 0;
Here if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are
they both set to zero.

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are
very common in programming. When you nest ifs, the main thing to remember is
that an else statement always refers to the nearest if statement that is within the same
block as the else and that is not already associated with an else. Here is an example.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

217

Object Oriented Programming with C++ and Java

 if (i ==10) {
 if (j< 20) a=b;
 if (k>100) c=d; / / this if is
 else a =c; / / associated with this else
 }
 else a = d ; / / this else refers to if (i == 10)

As the comments indicate, the final else is not associated with if (j<20,) because it is
not in the same block (even though it is the nearest if without an else.) Rather, the
final else is associated with if (i==10). The inner else refers to if (k>100,) because it is
the closes if within the same block.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the
if else if ladder. It looks like this:

 if(condition)
 statement;
 else if (condition)
 statement;
 else if (condition);
 statement;
 .
 .
 .
 else.
 statement.
This if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest
of the ladder is bypassed. If none of the conditions is true, then the final else
statement will be executed. The final else acts as a default condition; that is if all
other conditional tests fail, then the last else statement is performed. If there is not
final else and all other conditions are false, then no action will take place.

Switch

The switch statement is Java’s multi way branch statement. It provides an easy way
to dispatch execution to different parts of your code based on the value of an
expression. As such, it often provides a better alternative than a large series of if-else-
if statements. Here is the general form of a switch statement:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 218

Elements of Java

 switch (expression) {
 case value1:
 / / statement sequence
 break;
 case value2:
 / / statement sequence
 break;
 .
 .
 .
 case valueN:
 / / statement sequence
 break;
 default:
 / / default statement sequence
}

The expression must be of type byte, short, int, or char, each of the values specified in
the case statements must be of a type compatible with the expression. Each case
value must be a unique literal (that is, it must be a constant, not a variable).
Duplicate case values are not allowed.

Iteration Statements

Java’s iteration statements are for while, and do while. These statements create what
we commonly call loops. As you probably know, a loop repeatedly executes the
same set of instructions until a termination condition is met. Java has a loop to fit
any programming need.

While

The while lope is Java’s most fundamental looping statement. It repeats a statement
or block while its controlling expression is true. Here is its general form.

while (condition) {

 / / body of loop
}

The condition can be any boolean expression. The body of the loop will be executed as long as the

conditional expression is true. When condition become false, control passes to the next line of code

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

219

Object Oriented Programming with C++ and Java

immediately following the loop. The curly braces are unnecessary if only a single statement is begin

repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”.

/ / Demonstrate the while loop.
 class while{

 public static void main (String args []) {
 int n = 10;
 while (n > 0) {
 System.out.println (“tick” + n);
 n - -;
 }
 }
}

when you run this program, it will “tick” ten times:

 tick 10
 tick 9
 tick 8
 tick 7
 tick 6
 tick 5
 tick 4
 tick 3
 tick 2
 tick 1

Do-While

As you just saw, if the conditional expression controlling a while loop is initially
false, then the body of the loop will not be executed at all. However, sometimes it is
desirable to execute the body of a while loop at least once, even if the conditional
expression is false to begin with. In other words, there are times when you would
like to test the termination expression at the end of the loop rather than at the
beginning. Fortunately, Java supplies a loop that does just that the do-while. The do-
while loop always executes its body at least once, because its conditional expression
is at the bottom of the loop. Its general form is

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 220

Elements of Java

 do {
 / / body of loop
 } while (condition);

Each iteration of the do-whole-loop first executes the body of the loop and then
evaluates the conditional expression. If this expression is true, the loop will repeat.
Otherwise the loop terminates. As with all of Java’s loop’s condition must be a
Boolean expression.

Here is a reworked version of “tick” program that demonstrates the do-while-loop.
It generates the same output as before.

/ / Demostrate the do-while loop.
 class Dowhile {
 public static void main (String args []) {
 int n = 10;

 do {
 System.out.println(“tick” +n);
 n - - ;
 }while (n>0);
 }
}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows.

 do {
 System.out.println (“tick”) + n);
 } while (- - n > 0);

In this example, the expression (- -n >0) combines the decrement of n and the test for
zero into one expression. Here is how it works. First, the - - n statement executes,
decrementing n and returning the new value of n . This value is then compared with
zero. If it is greater than zero, the loop continues otherwise it terminates.

for

for loop is a powerful and versatile construct. Here is the general form of the for
statement.

 for (initialization; condition; iteration){

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

221

Object Oriented Programming with C++ and Java

 / / body
}

If only one statement is being repeated, there is no need for the curly braces. The for
loop operates as follows. When the loop first starts, the initialization portion of the
loop is executed. Generally, this is an expression that sets the value of the loop
control variable, which acts as a counter that controls the loop. It is important to
understand that the initialization expression is only executed once.

Nest, condition is evaluated. This must be a boolean expression. It usually tests the
loop control variable against a target value. If this expression is true, then the body
of the loop is executed. If it is flaps, the loop terminates. Next the integration
portion of the loop is executed. The loop then iterates, first evaluating the
conditional expression, then executing the body of the loop, and then executing the
iteration expression with each pass. This process repeats until the controlling
expression is false.

Here is a version of the “tick” program that uses a for loop.

/ / demonstrate the for loop.
class ForTick {
 public static void main (String atgs [] 0 {
 int n ;
 for (n=10; n>0; n - -)
 System.out.println (“tick” + n)
 }
}

11.5 Arrays

An array is a group of like-types variables that are referred to by a common name.
Arrays of any type can be created and may have one or more dimensions. A specific
element in an array is accessed by its index. Arrays offer a convenient means of
grouping related information.

One Dimensional Arrays

A one dimensional array is, essentially, a list of like typed variables. To create an
array, you first must create an array variable of the desired type. The general form of
a one dimensional array declaration is

type var-name [];

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 222

Elements of Java

Here, type declares the base type of the array. The base type determines the data type
of each element that comprises the array. Thus, the base type for the array
determines what type of data the array will hold. For example, the following declares
an array named month days with the type “array of int”.
int month_days [] ;
Although this declaration established the fact that month_days is an array variable,
no array actually exists. In fact, the value of month days is set to null, which
represents an array with no value. To link month_days with an actual, physical array
of integers, you must allocate one using new and assign it to month_days. New is a
special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appears as follows:

 array –var =new type [size];

Here is a program that creates an array of the numbr of days in each month.

public static void main (String args []) {
int month_days [] ;
month_days = new int [5];
month_days [0] = 31;
month_days [1] = 28;
month_days [2] = 31;
month_days [3] = 30;
month_days [4] = 31;
month_days [5] = 30;
System.out.println(“April has”+month_day(3)+”days.”);

 }
}

Multidimensional Arrays

In Java multidimensional arrays are actually arrays of arrays. These as you might
expect, look and act like regular multidimensional arrays. However, as you will see,
there are a couple of subtle difference. To declare a multidimensional array variable,
specify each additional index using another set of square brackets. For example, the
following declares a two dimensional array variable called twoD.

int twoD [] [] = new int [4] [5];

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

223

Object Oriented Programming with C++ and Java

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is
implemented as an array of arrays of int. Conceptually, this array will look like the
one shown in figure

 Right index determines column.

 [0][0] [0][1] [0][2] [0][3] [0][4]
 Left
 Index
 [1][0] [1][1] [1][2] [1][3] [1][4]

 Determines
 [2][0] [2][1] [2][2] [2][3] [2][4]
 Row

 [3][0] [3][1] [3][2] [3][3] [3][4]

 Given : int twoD[] [] = new int[4][5];

Two-dimensional array

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

/ / Demonstrate a two dimensional array.
 class TwoDArray {
 public static void main (String args []) {
 int two D [] = new int [4] [5] ;
 int i,j, k = 0;
 for (i=0; i<4; i+ +)
 for (j=0; j<5; j + +) {
 twoD[i] [j] = K;
 K + +;
 }

 for (i=0; i<4; i+ +) {
 for (j=0; j<5; j ++)
 system.out.print (twoD[i] [j] + “ “) ;
 system.out.println ();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 224

Elements of Java

 }
 }
}

This program generates the following output.

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for first (leftmost) dimension. You can allocate the remaining dimensions
separately. For example, this following code allocates memory for the first dimension
of twoD when it is declared. It allocates the second dimension manually.

int twoD [] [] = new int [4] [];
twoD[0] = new int [5];
twoD[1] = new int [5];
twoD[2] = new int [5];
twoD[3] = new int [5];

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array.

type [] var-name;

Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent.

 int al[] = new int [3];
 int [] a2 = new int [3];
 The following declarations are also equivalent;

 char twod1[] [] = new char [3] [4] ;
 char [] [] twod2 = new char [3] [4];

This alternative declaration form is included mostly as a convenience.

11.6 Using Command Line Arguments

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

225

Object Oriented Programming with C++ and Java

Sometimes you will want to pass information into a program when you run it. This is
accomplished by passing command line arguments to main (). A command-line
argument is the information that directly follows the program’s name on the
command line when it is executed. To access the command-line arguments inside a
Java program is quite easy, they are stored as strings in the string array passed to
main () . For example, the following program displays all of the command line
arguments that it is called with:

/ / Display all command-line arguments.
 class CommandLine {
 public static void main (String args []) {
 for (int i=o; i<args.length; i + +)

 System.out.println(“args[“ + i +”]:” +
 args [I]) ;

 }
}

Try executing this program, as shown here
 java CommandLine this is a test 100 –1
When you do, you will see the following output.

args[0] : this
args[1] : is
args[2] : a
args [3] : test
args[4] : 100
args [5] : -1

11.7 Short Summary

 Java defines eight simple (or elemental) types of data: byte, short int, long,

char, floats, Double, and Boolean

 A variable is defined by the combination of an identifier, a type, and an
optional initializer.

 An array is a group of like-types variables that are referred to by a common

name.

 All command-line arguments are passing as strings.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 226

Elements of Java

11.8 Brain Storm

1. What are the various data types involved in Java Explain Briefly.

2. How variables can be declared?

3. Explain all the types of Operators?

4. With an example, Explain One Dimensional & Multi Dimensional

5. What is the use of Command line argument?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

227

Object Oriented Programming with C++ and Java

Lecture - 12

Classes & Objects

Objectives

In this lecture you will learn the following

 Understanding the concept of object & classes

 Assigning object reference variables

 Knowing about the ‘this’ keyword

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 228

Classes & Objects

Lecture - 12

12.1 Snap Shot

12.2 Class Fundamentals

12.3 Declaring Objects

12.4 Constructors

12.5 Parameterized Constructors

12.6 The ‘this’ keyword

12.7 Short Summary

12.8 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

229

Object Oriented Programming with C++ and Java

12.1 Snap Shot

In this lecture we introduce the concept of classes and objects. It attributes and
methods represent a class.

12.2 Class fundamentals

The classes created in the primarily exist simply to encapsulate the main() method,
which has been used to demonstrate the basics of the Java syntax. Perhaps the most
important thing to understand about a class is that it defines a new data type. Once
defined, this new type can be used to create objects of that type. Thus, a class is a
template for an object, and an object is an instance of a class. Because an object is an
instance of a class, you will often see the two words object and instance used
interchangeably.

 The General form of a class

A class is declared by use of the class keyword. The classes that have been used up to
this point are actually very limited examples of its complete form. Classes can get
much more complex. The general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;
//…
type instance-variableN;

type methodname1(parameter-list) {
 // body of method
}
type methodname2(parameter-list) {
 //body of method
}
 //…
type methodnameN(parameter-list) {
 //Body of method
}
}
The data, or variables, defined within a class are instance variables. The code is
contained within methods. Collectively, the methods, and variables defined within a
class are called members of the class. In most classes, the instance variables are acted
upon and accessed by the methods defined for that class. In most classes, the instance

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 230

Classes & Objects

variables are acted upon and accessed by the methods defined for that class. Thus, it
is the methods that determine how a class’ data can be used.

Variables defined within a class instance variables because each instance of the class
contains its own copy of these variables. Thus, the data for one object is separate and
unique from the data for another. We will come back to this point shortly, but it is an
important concept to learn early.

All methods have the same general form as main(), which we have been using thus
far. However, most methods will not be specified as static or public.

A simple class

Let’s begin our study of the class with a simple example. Here is a class called box
that defines three instance variables: width, height, and depth. Currently, Box does
not contain any methods
Class box {
 double width, heigth, depth;
}

12.3 Declaring Objects

As just explained, when you create a class, you are creating a new data type. You
can use this type to declare objects of that type. However, obtaining objects of a class
is a two step process. First you must declare a variable of the class type. This variable
does not define an object. Instead, it is simply a variable that can refer to an object.
Second, you must acquire an actual, physical copy of the object and assign it to that
variable. You can do this using the new operator. The new operator dynamically
allocates (that is allocates at run time) memory for an objects and return a reference
to it. This reference is more or less, the address in memory of the object allocated by
new. This reference is then stored in the variable. Thus in Java all class objects must
be dynamically allocated. Let’s look at the details of this procedure.

 Box mybox = new box () ;

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly;
Box mybox ; / / declare reference to object
Mybox = new Box } () ; allocate a Box object

The effect of there two lines of code is depicted in the following figure

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

231

Object Oriented Programming with C++ and Java

 Statement Effect

Box Mybox; Null

 Mybox

 Mybox = new Bo(); Width

 Mybox Height

 Depth

Declaring an object of type Box
A closer look at new

As just explained the new operator dynamically allocates memory for an object. It
has this general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the
name of the class that is being instantiated. The class name followed by parentheses
specifies the constructor for the class. A constructor defines what occurs when an
object of a class is created. Constructors are an important part of all classes and have
many significant attributes. Most real world classes explicitly constructor is specified,
then Java will automatically supply a default constructor. This is the case with box.
For now , we will use the default constructor. Soon, you will see how to define your
own constructor.

Assigning object reference variables
Object reference variables act differently than you might expect when an assignment
takes place./ for example, what do you think the following fragment does?
 Box b1 = new Box();

Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred
to by b1. That is you might think that b1 and b2 refer to separate and distinct objects.
However, this would be wrong. Instead, after this fragment executes, b1 and b2 will
both refer to the same object. The assignment of b1 to b2 did not allocate any
memory or copy any part of the original object. It simply makes b2 refer to the same
object as does b1. Thus any changes made to the object through b2 will affect the
object to which b1 is referring, since they are the same object.

This situation is depicted here:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 232

Classes & Objects

 Width

b1 Height Box Object

 Depth
 b2

Although b1 and b2 both refer to the same object, they are not linked in any other
way. For example, a subsequent assignment to b1 will simply unhook b1 from the
original object without affecting the object or affecting b2 for example

Box b1 = new Box();
Box b2 = b1;
// …
b1=null;
here, b1 has been set to null, but b2 still points to the original object.

Introducing methods
Classes usually consist of two things: instance variables and methods. The topic of
methods is a large one because Jana gives them so much power and flexibility. In
fact, much of the next chapter is developed to methods. However, there are some
fundamentals that you need to learn now so that you can begin to add methods to
your classes.

 This is the general form of a method
 Type name(parameter-list){
//body of method
}

12.4 Constructors

A constructor initializes an object immediately upon creation. It has the same name
as the class in which it resides and is syntactically similar to a method. Once defined,
the constructor is automatically called immediately after the object is created, before
the new operator completes. Constructors look a little strange because they have no
return type, not even void. This is because the implicit return type of a class’
constructor is the class type itself. It is the constructors’ job to initialize the internal
state of an object so that the code creating an instance will have a fully initialized,
usable object immediately.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

233

Object Oriented Programming with C++ and Java

Before moving on, let’s reexamine the new operator. As you know, when you
allocate an object, you use the following general form:
Class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What
is actually happening is that the constructor for the class is being called thus, in the
line
Box mybox1= new Box();

New Box() is calling the Box() constructor. When you do not explicitly define a
constructor for a class, then Java creates a default constructor for the class. This is
why the preceding line of code worked in earlier versions of box that did not define a
constructor.

12.5 Parameterized Constructors

While the box() constructor in the preceding example does initializes a box object, it
is not very useful- all boxes have the same dimensions. What is needed is a way to
construct box objects of various dimensions. The easy solution is to add parameters
to the constructor. As you can probably guess, this makes them much more useful.
For example, the following version of box defines a parameterized constructor,
which sets the dimensions of a box as specified by those parameters. Pay special
attention to how box objects are created.

class box {
double width, height, depth;
box(double w, double h, double d)
{
 width = w;
height = h;
depth = d;
}

12.6 The ‘this’ keyword

Sometimes a method will need to refer to the object that invoked it. To allow this,
java defines the this keyword. This can be used inside any method to refer to the
current object. that is always a reference to the object on which the method was
invoked. You can use this anywhere a reference to an object of the current class’ type
is permitted.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 234

Classes & Objects

To better understand what this refers to, consider the following version of box():
// a redundant use of this.
Box(double w, double h, double d) {
This.width;
This.height;
This.depth;
}

This version of box() operates exactly like earlier version. The use of this is
redundant, but perfectly correct. Inside box(), this will always refer to the invoking
object. While it is redundant in this case, this is useful in other contexts.

12.7 Short Summary

 A class is a template for an object, and an object is an instance of a class.

 The new operator dynamically allocates (that is allocates at run time) memory
for an objects and return a reference to it.

 A constructor initializes an object immediately upon creation.

12.8 Brain Storm

1. What is Class, Explain with one Example?

2. What is object?

3. How to declare an object, Explain with one Example?

4. What is the difference between Class and Objects?

5. What is the use of ‘this’ keyword?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

235

Object Oriented Programming with C++ and Java

Lecture - 13

Inheritance in Java

Objectives

In this lecture you will learn the following

 About Inheritance

 Super and Final Key word

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 236

Inheritance in Java

Lecture - 13

13.1 Snapshot

13.2 Inheritance Basis

13.3 ‘Super’ Keyword

13.4 ‘Final’ Keyword

13.5 Short Summary

13.6 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

237

Object Oriented Programming with C++ and Java

13. 1 Snap shot

In this lecture you will learn about Basics of Inheritance, ‘Super’ keyword and about
‘Final’ keyword.

13.2 Inheritance Basics

To inherit a class, you simply incorporate the definition of one class into
another by using the extends keyword. To see how, let’s begin with a short
example. The following program creates a superclass called A and a subclass
called B. Notice how the keyword extends is used to create a subclass of A

// A simple example of inheritance

// Create a superclass
class A {
 int i, j ;

void showij() {
 System.out.println(“i and j : “ + i + “ “ + j) ;
 }
}

// Create a subclass by extending class A
class B extends A {
 int k;

 void showk() {
 System.out.println(“i+j+k: “ + (i+j+k));
 }
}

class SimpleInheritance {
 public static void main(String args[]) {
 A superOb = new A();
 B subOb = new B ();

// The supeclass may be used by itself
superOb.i = 10;
superOb.j = 20;
System.out println(“Contents of superOb: “);
superOb.showij();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 238

Inheritance in Java

System.out.println();

/* The subclass has access to all public members of its superclass. */
subOb.i = 7;
subOb.j = 8;
subOb.k = 9;
System.out.println(“Contents of subOb: “);
subOb.showij();
subOb.showk();
System.out.println();

System.out.println(“Sum of i,j and k in subOb:”);
SubOb.sum ();

 }
}
The output from this program is shown here

Contents of superOb:
i and j : 10 20

Contents of subOb;
i and j: 7 8
Sum of I,j and k in subOb;
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is
why subOb can access i an j and call showij(). Also, inside sum (),i and j call
showij(). Also, inside sum (),i and j can be referred to directly, as if they were part of
B.

Even though A is a superclass for B, it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be
used by itself. Further, subclass can be a superclass for another subclass.
The general form of a class declaration that inherits a superclass is shown here:

 class subclass-name extends superclass-name{
 //body of class
 }
You can only specify one superclass for any subclass that you create. Java
does not support the inheritance of multiple superclasses into a single
subclass. (This differs from C++, in which you can inherit multiple base

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

239

Object Oriented Programming with C++ and Java

class.) . Create a hierarchy of inheritance in which a subclass becomes a
superclass of another subclass. However, no class can be a superclass of itself.

13.3 Using ‘super’ keyword

In the preceding examples, classes derived from Box were not implemented as
efficiently or as robustly as they could have been. For example, the constructor for
BoxWeight explicitly initializes the width, height and depth fields of Box(). Not
only does this duplicate code found in its superclass, which is inefficient, but it
implies that a subclass must be granted access to these members. However, there
will be times when you will want to create a superclass that keeps the details of its
implementation to itself (that is, that keeps its data members private). In this case,
there would be no encapsulation is a primary attribute of OOP, it is not surprising
that Java provides a solution to this problem. Whenever a subclass needs to refer to
its immediate supercalss, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The
second is used to access a member of the superclass that has been hidden by
a member of a subclass. Each use is examined here.

Using super to Call Superclass Constructors

A subclass can call a constructor method defined by its superclass by use of the
following form of super

 super(parameter – list);

Here parameter-list specifies any parameters needed by the constructor in the
superclass. super() must always be the first statement executed inside a subclass’
constructor.
To see how super () is used, consider this improved version of the BoxWeight()
class:

//BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
 double weight; // weight of box

// initialize width, height and depth using super ()
BoxWeight (double w, double h, double d, double m) {

 super (w,h,d); // call superclass constructor
 weight = m;

}
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 240

Inheritance in Java

Here BoxWeight() calls super () with the parameters w,h and d. This causes
the Box() constructor to be called, which initializes width, height and depth
using these values. BoxWeight no longer initializes these values itself. It only
needs to initialize the value unique to it: weight. This leaves Box free to make
these values private if desired.

In the preceding example, super() was called with three arguments. Since
constructors can be overloaded, super() can be called using any form defined by the
superclass. The constructor executed will be the one that matches the arguments. for
example here is a complete implementation of BoxWeight that provides constructors
for the various ways that a box can be constructed. In each case, super() is called
using the appropriate arguments. For example, here is a complete implementation of
BoxWeight that provides construction for the various ways that a box can be
constructed. In each case, super() is called using the appropriate arguments. Notice
that width, height and depth have been made private within Box.

 // A complete implementation of BoxWeight.
 class Box {
 private double width;

private double height;
 private double depth;

 // construct clone of an object
 Box (Box Ob) { // pass object to constructor
 width = Ob.width;
 height = Ob.height;
 depth = Ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 //constructor used when no dimensions specified
 Box() {
 width =-1; //use –1 to indicate
 height =-1; // an uninitialized
 depth = -1; //box

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

241

Object Oriented Programming with C++ and Java

 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 //compute and return volume
 double volume() {
 return width *height * depth;
 }
}

// BoxWeight now full implements all constructors
class BoxWeight extends Box {
 double weight; // weight of box

 // construct clone of an object
 BoxWeight (BoxWeight Ob) { // pass object to constructor
 super(Ob);
 weight = Ob.weight;
 }

 // constructor when all parameters are specified
 BoxWeight(double w, double h, double d, double m) {
 super(w,h,d); // call superclass constructor
 weight = m;
 }

 // default constructor
 BoxWeight () {
 super();
 weight = -1;
 }

 //constructor used when cube is created
 BoxWeight (double len, double m) {
 super(len);
 weight = m;
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 242

Inheritance in Java

class DemoSuper {
 public static void main(String args[]) {
 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
 BoxWeight mybox3 = new BoxWeight (); // default
 BoxWeight mycube = new BoxWeight (3, 2);
 BoxWeight myclone = new BoxWeight(mybox1);
 double vol;

 vol = mybox1.volume() ;
 system.out.println(“Volume of mybox1 is “+ vol);
 system.out.println(“Weight of mybox1 is “ + mybox1.weight);
 system.out.println() ;

 vol = mybox2.volume() ;
 system.out.println(“Volume of mybox2 is “+ vol);
 system.out.println(“Weight of mybox2 is “ + mybox2.weight);
 system.out.println() ;

 vol = mybox3.volume() ;
 system.out.println(“Volume of mybox3 is “+ vol);
 system.out.println(“Weight of mybox3 is “ + mybox3.weight);
 system.out.println() ;

 vol = myclone.volume() ;
 system.out.println(“Volume of myclone is “+ vol);
 system.out.println(“Weight of myclone is “ + myclone.weight);
 system.out.println() ;

 vol = mycube.volume() ;
 system.out.println(“Volume of mycube is “+ vol);
 system.out.println(“Weight of mycube is “ + mycube.weight);
 system.out.println() ;
 }
}

This program generates the following output:

 Volume of mybox1 is 3000.0
 Weight of mybox1 is 34.3

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

243

Object Oriented Programming with C++ and Java

 Volume of mybox2 is 24.0
 Weight of mybox2 is 0.076

 Volume of mybox3 is –1.0
 Weight of mybox3 is –1.0

 Volume of myclone is 3000.0
 Weight of myclone is 34.3

 Volume of mycube is 27.0
 Weight of mybox1 is 2.0

Pay special attention to this constructor in BoxWeight() ;

// construct clone of an object
BoxWeight(BoxWeight Ob) { // pass object to constructor
 super(Ob);
 weight = Ob.weight;
}

Notice that super() is called with an object of type BoxWeight – not of type Box. This
still invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable
can be used to reference any object derived form that class. Thus, we are able to pass
a BoxWeight object to the Box constructor. Of course, Box only a knowledge of its
own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is
calling the constructor of its immediate superclass. Thus, super() always refers to the
superclass immediately above the calling class. This is true even in a multileveled
hierarchy. Also, super() must always be the first statement executed inside a
subclass constructor.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used. This usage has the following general
form:

 super.member

Here member can be either a method or an instance variable.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 244

Inheritance in Java

This second form of super is most applicable to situations in which member names of
a subclass hide members by the same name in the superclass. Consider this simple
class hierarchy:
// Using super to overcome name hiding.
class A {
 int i;
}

//Create a subclass by extending class A.
class B extends A {
 int i; // this i hides the i in A

 B(int a, int b) {
 super.i = a; // i in A
 i = b; // i in B
 }

 void show() {
 System .out.println(“i in superclass: “ = super.i);

 System.out.println(“i in subclass: “ + i);
 }
}

class UseSuper {
 public static void main(String args[]) {
 B subOb = new B(1,2);

 subOb.show();
 }
}

The program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. Super can also be used to call methods that are hidden by
a subclass.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

245

Object Oriented Programming with C++ and Java

13.4 Using ‘Final’ keyword

A variable can be declared as final. Doing so prevents its contents from being
modified. This means that you must initialize a final variable when its is declared.
For example
final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;

Subsequent parts of your program can now use FILE_OPEN etc as if they were
constants, without fear that a value has been changed.

It is a common coding convention to choose all uppercase identifiers for final
variables. Variables declared as final do not occupy memory on a per-instance basis.
Thus a final variable is essentially a constant.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This second usage of final is described
in the next chapter, when inheritance is described.

Using final with Inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a
named constant. The other two uses of final apply to inheritance.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times
when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods
declared as final cannot be overridden. The following fragment illustrates final:

class A{
 final void meth() {
 System.out.println(“This is a final method.”);
 }
}

class B extends A {
 void meth() { // ERROR! Can’t override.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 246

Inheritance in Java

 System.out.println((“Illegal!”);
 }
}

Because meth() is declared as final, it cannot be overridden in B. If you
attempt to do so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement. The
compiler is free to inline calls to them because it “knows” they will not be overridden
by a subclass. When a small final function is called often the Java compiler can copy
the byte code for the subroutine directly inline with the compiled code of the calling
method, thus eliminating the costly overhead associated with a method call. Inlining
is only an option with final methods. Normally, Java resolves calls to methods
dynamically at run time. This is called late binding. However since final methods
cannot be overridden a call to one can be resolved at compile time. This is called
entry binding.

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this,
procedure the class declaration with final. Declaring a class a final implicitly
declares all of its methods a final, too. As you might expect, it is illegal to
declare a class as both abstract and final since an abstract class is incomplete
by itself and relies upon its subclasses to provide complete implementations.

Here is an example of a final class:

final class A {
 // …
}

// The following class is illegal.
class B extends A { // ERROR! Can’t subclass A
 // …
}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

13.5 Short Summary

 Java does not support the inheritance of multiple super classes into a single
subclass.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

247

Object Oriented Programming with C++ and Java

 Whenever a subclass needs to refer to its immediate supercalss, it can do so by

use of the keyword super.

 A super class variable can be used to reference any object derived form that
class.

 Sometimes you will want to prevent a class from being inherited. To do this,

procedure the class declaration with final

13.6 Brain Storm

1. What is the use of Inheritance in Java ?

2. What is the need of ‘Super’ keyword?

3. Explain briefly about the ‘Final’ keyword.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 248

Polymorphism in Java

Lecture - 14

Polymorphism in Java

Objectives

 In this lecture you will learn the following

 Know about Polymorphism in Java

 Dynamic Method Dispatch

 Abstract Classes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

249

Object Oriented Programming with C++ and Java

Lecture - 14

14.1 Snap Shot

14.2 Polymorphism in Java

14.3 Dynamic Method Dispatch

14.4 Why Overridden Methods

14.5 Applying Method Overriding

14.6 Using Abstract Classes

14.7 Short Summary

14.8 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 250

Polymorphism in Java

14.1 Snap shot

This lectures covers the Polymorphism in Java , need of Dynamic method
dispatch and Using Abstract Classes.

14.2 Polymorphism in Java

Polymorphism (from the Greek , meaning “many forms “) is a feature that allows one
interface to be used for a general class of actions. The specific action is determined by
the exact nature of the situation. Consider a stack (which is a last-in, first-out list).
You might have a program that requires three types of stacks . One stack is used for
integer values, one for floating-point values, and one for characters. The algorithm
that implements each stack is the same, even though the data being stored differs. In
a non-object-oriented language, you would be required to create three different sets
of stack routines, with each set using different names. However , because of
polymorphism, in Java you can specify a general set of stack routines that all share
the same names.

More generally, the concept of polymorphism is often expressed by the phrase “ one
interface , multiple methods.” This means that it is possible to design a generic
interface to a group of related activities. This helps reduce complexity by allowing
the same interface to be used to specify a general class of action. It is the compiler’s
job to select the specific action (that is, method) as it applies to each situation. You,
the programmer , do not need to make this selection manually . You need only
remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a
cat, it will bark and run after it. If the dog smells its food, it will salivate and run to
its bowl. The same sense if smell is at work in both situations. The difference is what
is being smelled, that is, the type of data being operated upon by the dog’s nose! This
same general concept can be implemented in Java as it applies to methods within a
Java Program.

14.3 Dynamic method dispatch

Indeed, if there were nothing more to method overriding than a name space
convention, then it would be, at best, an interesting curiosity, but of little real value.
However, this is not the case. Method overriding forms the basis for one of Java’s
most powerful concepts: dynamic method dispatch.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

251

Object Oriented Programming with C++ and Java

Dynamic method dispatch is the mechanism by which a call to an overridden
function is resolved at run time, rather than compile time. Dynamic method dispatch
is important because this is how java implements run-time polymorphism.

Let’s begin by restating an important principle: a super class reference variable can
refer to a subclass object. Java uses this fact to resolve calls to overridden methods at
run time. Here is how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the
type of the object being referred to at the time the call occurs. Thus, this
determination is made at run time. When different types of objects are referred to,
different versions of an overridden method will be called. In other words, it is the
type of the object being referred to that determines which version of an overridden
method will be executed. Therefore, it a superclass contains a method that is
overridden by a subclass, then when different types of objects are referred to through
a superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic method dispatch
class A {
 void callme() {
System.out.println(“Inside A’s callme method”);
}
}
class B extends A {
// override callme()
void callme()
{
System.out.println(“Inside B’s callme method”);
}
}
class C extends A {
// Override callme()
System.out.println(“Inside C’s callme method”);
}
}
class Dispatch {
public static void main(String args[]){
A a = new A(); // objects of type A
B b = new B(); // Objects of type B
C c = new C(); // objects of type C
A r; //Obtain a reference of type A

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 252

Polymorphism in Java

r=a;
r.callme();
r=b;
r.callme();
r=c;
r.callme();
}
}

The output from the program is shown here:
Inside A’s callme method
Inside B’s callme method
Inside C’s Callme method

This program creates one superclass called A and two subclasses of it, called B and C.
Subclasses B and C override callme() declared in A. Inside the main() method, objects
of type A, B,and C are declared. Also, a reference of type A, called r, is declared. The
program then assigns a reference to each type of objects to r and uses that reference
to invoke callme() As the output shows the version of callme() executed is
determined by the type of object being referred to at the time of the call. Had it been
determined by the type of the reference variable, r, you would see three calls to A’s
callme() method.

14.4 Why Overridden Methods?

As stated earlier, overridden method allow Java to support run-time polymorphism.
Polymorphism is essential to object oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods. Overridden methods are another way that Java implements the “one
interface, multiple methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
super classes and subclasses form a hierarchy which moves from lesser to greater
specialization. Used correctly, the superclass provides all elements that a subclass
can own. This allows the subclass the flexibility to define its won methods, yet still
enforces consistent interface. Thus, by combining inheritance with overridden
methods, a superclass can define the general form of the methods that will be used
by all of its subclasses..

Dynamic, run time polymorphism is one of the most powerful mechanisms that
object-oriented design brings to bear on code reuse and robustness. The ability of

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

253

Object Oriented Programming with C++ and Java

existing code libraries to call methods on instances of new classes without
recompiling while maintaining a clean abstract interface is a profoundly powerful
tool.

14.5 Applying Method Overriding

Let’s look at a more practical example that uses methods overriding. This following
program creates a superclass called Figure that stores the dimensions of various two-
dimensional objects. It also defines a method called area () that computes the area of
an object. The program derives two subclasses from Figure. The first is rectangle and
the second it Triangle. Each of these subclasses overrides area () so that it returns
the area of a rectangle a triangle, respectively.

/ / using run time polymorphism.

Class figure {
Double dim 1 ;
Double dim2;

 Figure (double a, double b) {
Dim1 = a;
Dim2 = b;
}
double area () {
 System.out.println (“Area for figure is undefined,”);
return 0;
 }
}
class Rectangle extends Figure {
rectangle (double a , double b) {
super (a, b) ;
}

/ / override area for rectangle

double area () {
System.out.println(“Inside Area for Rectangle.”);
return dim1 * dim2;
 }
}

class triangle extends figure {
Triangle (double a , double b) {
super (a, b);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 254

Polymorphism in Java

/ / override area for right triangle
double area () {
System.out.println(“inside area for triangle.”);
Return dim1*dim2/2;
 }
}
class Find Areas {
public static void main (string args []) {

 Figure f = new Figure (10,10);
rectangle r = new rectangle (9, 5);
triangle T = new Triangle (10, 8);
Figure figref;

figref = r;
System.out.println (“Area is” + figref.area ());

figref = t;
System.out.println.(“Area is” + figref.area ());

figref = f;
System.out.println (“Area is” + figref.area ());

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Are is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run time polymorphism, it is
possible to define one consistent interface that is used by sever al different, yet
related types of objects. In this case, if an object is derived from figure, then its area
can be obtained by called area (). The interface to this operation is the same no
matter what type of figure is being used.

14.6 Using Abstract Classes

There are situation in which you will want to define a superclass that declares the
structure of a given abstraction without providing a complete implementation of

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

255

Object Oriented Programming with C++ and Java

every method. That is sometimes you will want to create a superclass that only
defines a generalized form that will be shared by all of its subclasses, leaving it to
each subclass to fill in the details. Such a class determines the nature of the methods
that the subclasses must implement. One way this situation can occur is when a
superclass is unable to create a meaningful implementation for a method. This is the
case with the class figure used in the preceding example. The definition of area () is
simply a placeholder. It will not compute and display the area of any type of object.
As you will see as you create your own class libraries, it is not uncommon for a
method to have no meaningful definition in the context of its superclass. You can
handle this situation two ways. One way, as shown in the previous example, is to
simply have it report a warning message. While this approach can be useful in
certain situations such as debugging it is not usually appropriate. You may have
methods which must be overridden by the subclass in order for the subclass to have
any meaning. Consider the class Triangle. It has no meaning if area () is not
defined. In this case, you want some way to ensure that a subclass does, indeed,
override all necessary methods. Java’s solution to this problem is the abstract
method.

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier. These methods are sometimes referred to a subclasses
responsibility because they have no implementation specified in the superclasses .
Thus, a subclass must override them-it cannot simply use the version defined in the
superclass. To declare an abstract methods, use this general form.

abstract type name (parameter-list);
As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared abstract.
To declare a class abstract, you simply use the abstract keyword in front of the class
keyword at the beginning of the class declaration. There can be no objects of an
abstract class. That is, an abstract class cannot be directly instantiated with the new
operator. Such objects would be useless, because an abstract class is not fully defined.
Also, you cannot declare abstract constructors, or abstract static methods. Any
subclass of an abstract class must either implement all of the abstract methods in the
superclass, or be itself declared abstract.

Here is simple example of class with an abstract method, followed by a class which
implements that method;

/ / A simple demonstration of abstract.

abstract class A {
abstract void callme () ;

 / / concrete methods are still allowed in abstract classes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 256

Polymorphism in Java

void callmetoo () {
 System.out.println (“This is a concrete method.”);
 }
}
class B extends A {
void callme () {
 system.out.println (“B’ s implementation of callme.”);
 }
}
class AbstractDemo {
 public static void main (string args []) {
B b = new B () ;
b. callme ();
b.callmetoo ();
 }
}

Notice that no objects of class A are declared in the program. As mentioned, it is not
possible to instantiated an abstract class. One other point, class A implements a
concrete method called callmetoo (). This is perfectly acceptable. Abstract classes can
include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to
create object references, because Java’s approach to run_time polymorphism is
implemented through the use of superclass references. Thus, it must be possible to
create a reference to an abstract class so that it can be used to point to a subclass
object. You will see this feature put to use in the next example..

Using an abstract class, you can improve the Figure class shown earlier. Since there is
no meaningful concept of area for an underlined two-dimensional Figure, the
following version of the program devalues area () as abstract inside Figure . This, of
course, means that all classes derived from Figure must override area ().

/ / using abstract methods an classes.

abstract class figure {

double dim1;

double dim2;

Figure (double a, double b) {
dim = a;
dim2 = b;
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

257

Object Oriented Programming with C++ and Java

 / / area is now an abstract method
abstract double area () ;
}
class Rectangle extends Figure {
Rectangle (double a, double b) {
super (a, b) ;

}

/ / overide area for rectangle

double are () {
 system.out.println (“Inside Area for Rectangle.”);
return dim1 * dim 2;
 }
}

class Traingle extends Figure {
Traingle (double a, double b) {
 super (a, b);
}

/ / override area for right triangle

double area () {
System.out.println(“Inside Area for Triangle.”);.
retrun.dim1 * dim2 / 2 ;
}
}

class AbstractAreas {
public static void main (String args []) {

/ / Figure f = new Figure (10,10); / / illegal now

Rectangle r = new Rectangle (9,5);
Triangle t = new Triangle (10, 8);

Figure figref; / / this is ok, no object is created
figref = r;
System.out.println (“Area is” + figref.area ());

figref = t;
System.out.println (“Area is + figref.area ());
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 258

Polymorphism in Java

 }

As the comment inside main() indicates, it is no longer possible to declare objects of
type figure, since it is now abstract. And, all subclasses of Figure must override area
(). To prove this to yourself, try creating a subclass that does not override area () .
You will receive a compile- time error..

Although it is not possible to create an object of type Figure, you can create a
reference variable for type Figure. The variable Figref is declared as a reference to
Figure, which means that it can be used to refer to an object of any class derived from
Figure. As explained, it is through superclass reference variables that overridden
methods are resolved at run time.

14.7 Short Summary

 More generally, the concept of polymorphism is often expressed by the phrase “
one interface , multiple methods.”

 Dynamic method dispatch is the mechanism by which a call to an overridden
function is resolved at run time, rather than compile time.

 There are situation in which you will want to define a superclass that declares the
structure of a given abstraction without providing a complete implementation of
every method.

14.8 Brain Storm

1. Define the term Polymorphism in Java.

2. What is meant by Dynamic Method Dispatch?

3. How the Abstraction Classes used in Java?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

259

Object Oriented Programming with C++ and Java

Lecture - 15

Interface in Java Inner Classes

Objectives

In this lecture you will learn the following

 Knowing Interfaces

 Applying Interfaces

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 260

Interface in Java Inner Classes

Lecture - 15

15.1 Snap Shot

15.2 Interfaces

15.3 Defining an Interface

15.4 Implementing Interfaces

15.5 Partial Implementations

15.6 Applying Interfaces

15.7 Variables in Interfaces

15.8 Interfaces Can Be Extended

15.9 Short Summary

15.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

261

Object Oriented Programming with C++ and Java

15.1 Snap Shot

In this lecture you will learn about the Interfaces, Defining an Interface,
Implementing an Interface, what are the variables used in interface and how to
extend an Interface.

15.2 Interfaces

Using the keyword interface, you can fully abstract a class’ interface from its
implementations. That is using interface , you can specify what a class must do, but
not how it does it. Interfaces are syntactically similar to classes, but they lack instance
variables and their methods are declared without any body. In practice, this means
that you can define interfaces which don’t make assumptions about how they are
implemented. Once it is defined, any number of classes can implement an interface.
Also one class can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods
defined by the interface. However, each class is free to determine the details
of its own implementation. By providing the interface keyword, Java allows
you to fully utilize the “one interface, multiple methods” aspect of
polymorphism.

Interfaces are designed to support dynamic method resolution at run time.
Normally, in order for a method to be called from one class to another, both classes
need to be present at compile time so the Java compiler can check to ensure that the
method signatures are compatible. This requirement by itself makes for a static and
non extensible classing environment. Inevitably in a system like this functionality
gets pushed up higher and higher in the class hierarchy so that the mechanisms will
be available to more and more subclasses. Interfaces are designed to avoid this
problem. They disconnect the definition of a method or set of methods from the
inheritance hierarchy. Since interfaces are in a different hierarchy form classes, it is
possible for classes that are unrelated in terms of the class hierarchy to implement
the same interface. This is where the real power of interfaces is realized.

15.3 Defining an Interface

An interface is defined much like a class. This is the general form of an interface:

 access interface name {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 262

Interface in Java Inner Classes

 return-type method-name1(parameter-list);

 return-type method-name2(parameter-list);

 type final-varname1 = value;

 type final-varname2 = value;

 // …

 return-type method-nameN(parameter-list);

 type final-varnameN = value;

 }

Here, access is either public or not used. When no access specifier is included, then
default access results and the interface is only available to other members of the
package in which it is declared. When it is declared as public, the interface can be
used by any other code. name is the name of the interface and can be any valid
identifier. Notice that the methods which are declared have nobodies. They end with
a semicolon after the parameter list. They are essentially abstract methods; there can
be no default implementation of any method specified within an interface. Each class
that includes an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final
and static, meaning the implementing class cannot change them. They must also be
initialized with a constant value. All methods and variables are implicitly public if
the interface, itself, is declared as public.

Here is an example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.

interface Callback {
 void callback (int param);
}

15.4 Implementing Interfaces

Once an interface has been defined, one or more classes can implement that
interface. To implement an interface include the implements clause in a class
definition, and then create the methods defined by the interface. The general
form of a class that includes the implements clause looks like this:

 access class classname [extends superclass]
 [implements interface [interface …]] {
 / / class-body
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

263

Object Oriented Programming with C++ and Java

Here, access is either public or not used. If a class implements more than one
interface, the interfaces are separated with a comma. If a class implements two
interfaces that declare the same methods, then the same method will be used by
clients of either interface. The methods that implement an interface must be declared
public. Also, the type signature of the implementing method must match exactly the
type signature specified in the interface definition.

Here is small example class that implements the Callback interface shown earlier.

 Class Client implements Callback {
 / / Implement Callback’s interface
public void callback(int p) {

 system.out.println (“callback called with” + p)

 }
}

 Notice that callback () is declared using the public access specifier.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client
implements callback () and adds the method nonIface Meth ().

 class Client implements Callback {
/ / Implement Callback’s interface

public void callback (int p) {
 System.out.println (“callback called with” + p);
}

void nonifaceMeth () {
 System.out.println (“Classes that implement interfaces” +
 “may also define other members, too.”);
 }
}

Accessing Implementations through Interface References

You can declare variables as object references that use an interface rather than a class
type. Any instance of any class that implements the declared interface can be stored
in such a variable. When you call a method through one of these references, the
correct version will be called based on the actual instance of the interface being

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 264

Interface in Java Inner Classes

referred to. This is one of the key features of interface. The method to be executed is
looked up dynamically at runtime, allowing classes to be created later than the code
which calls methods on them. The calling code can dispatch through an interface
without having to know anything about the “callee”.

The following example calls the callback () method via an interface reference
variable:

class TestIface {
 public static void main (String args []) {
 Callback c = new Client () ;
c.callback (42);
 }
}

The output of this program is shown here:

callback called with 42

Notice that variable c is declared to be of the interface type callback, yet it was
assigned an instance of client. Although c can be used to access the callback ()
methods, it cannot access any other members of the client class. An interface
reference variable only has knowledge of the methods declared by its interface
declaration. Thus, c could not be used to access nonIfaceMeth () since it is defined
by client but no Callback.

While the preceding example shows, mechanically, how an interface reference
variable can access an implementation object, it does not demonstrate the
polymorphic power of such a reference. To sample this usage, first create the second
implementation of Callback, shown here:

 / / Another implementation of Callback

class AnotherClient implements Callback {

 // Implement Callback’s interface

public void callback(int p) {
System.out.println (“Another version of callback”);
System.out.println (“p squared is “+(p*p));
}
}
Now, try the following class:
class TestIface2 (

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

265

Object Oriented Programming with C++ and Java

public static void main(String args []) {
Callback c= new Client () ;
AnotherClient ob = new anotherClient ();

c.callback (42);

c = ob; / / c now refers to AnotherClient object
c.callback (42) ;
 }
}

The output from this program is shown here:
 Callback called with 42
 Another version of callback
 p squared is 1764

As you can see the versions of callback () that is called is determined by the type of
object that c refers to at run time. While this is a very simple example, you will see
another, more practical one shortly.

15.5 Partial Implementations

If a class includes an interface but does not fully implement the methods defined by
that interface then that class must be declared as abstract. For example:

 abstract class Incomplete implements Callback {
 int a, b;
 void show () {
 System.out.println (a+ “ “ +b);
 }
 / / ….
}

Here, the class Incomplete does not implement callback () and must be declared as
abstract. Any class that inherits incomplete must implement callback () or be
declared abstract itself.

15.6 Applying Interfaces

To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters you developed a class called Stack that implemented a simple fixed size stack.
However there are many ways to implement a stack. For example, the stack can be of a fixed
size or it can be “ growable”. The stack can also be held in an array, a linked list, a binary

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 266

Interface in Java Inner Classes

tree, and so on. No matter how the stack is implemented, the interface to the stack remains
the same. That is, the methods push () and pop () define the interface to the stack
independently of the details of the implementation. Because the interface to a stack is
separate from its implementation, it is easy to define a stack interface, leaving it to each
implementation to define the specifies. Let’s look at two examples.

Frist, here is the interface that defines an integer stack. Put this in a file called IntStack Java .
This interface will be used by both stack implementations.

 / / Define an integer stack interface.

interface Intstack {

 void push (int item); / / store an item

int pop () ; retrieve an item

}

The following program creates a class called FixedStack that implements a fixed
length version of an integer Stack.

 / / An implementation of IntStack that uses fixed storage.

 class FixedStack implements Intstack {

 private int stck [];

 private int tos ;

/ / allocate and initialize stack

 FixedStack (int size) {

stck = new int (size);

tos = -1;

}

/ / Push an item onto the stack

public void push (int item) {

if (tos = =stck.length –1) / / use length member

 System.out.println (“Stack is full.”);

else

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

267

Object Oriented Programming with C++ and Java

Stck [+ +tos] = item;

 }

/ / Pop an item from the stack

public int pop () {

if (tos < 0) {

System.out.println (“Stack underflow.”);

retrun 0;

}

else

 return stck [tos - -];

 }

}

class IFTest {

 public static void main(String args []) {

FixedStack mystack1 = new FixedStack (5) ;

FixedStack mystack2 = new Fixedstack (8);

 / / push some numbers onto the stack

 for (int i=0; i<5; i++) mystack1. push(I;

 for (int I=0;I<8; I++) mystack2. push (I);

 / / pop those numbers off the stack

 System.out.println (“Stack in mystack1:”);

 for (int I=0; I<5; I++);

 system.out.println(mystacl1.pop ());

 system.out.println (“Stack in mystack2:”);

 for (int I=0; I<8;I+ +)

 System.out.println(mystack2.pop ());

 }

}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 268

Interface in Java Inner Classes

Following is another implementation of IntStack that creates a dynamic stack by use of the
same interface definition. In this implementation, each stack is constructed with an initial
length. If this initial length is exceeded, then the stack is increased in size. Each time more
room is needed, the size of the stack is doubled.

/ /Implement a “growable” stack.

class DynStack implemts Intstack {

private int stck [];

private int tos ;

/ / allocate and initialize stack

DynStack (int size) {

stck=new int [size];

tos = -1;

}

/ / Push an item onto the stack

public void push (int item) {

/ / if stack is full, allocate a large stack

if (tos= = stack.length –1) {

int temp []=new int [stack.length * 2]; / / double size

for (int i=0; i<stck.length; i+ +) temp[i] = stck [i];

stck = temp;

stck[+ +tos] =item;

 }

 else

stck [+ +tos] = item;

}

/ / Pop an item from the stack’

public int pop() {

if (tos<0) {

System.out.println(“Stack underflow.”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

269

Object Oriented Programming with C++ and Java

return 0;

}

else

 return stck [tos - -];

 }

}

class IFTest2 {

 public static void main (string args []) {

 DynStack mystack1 = new DynStack (5);

 DynStack mystack 2 = new DynStack (8);

/ / these loops cause each stack to grow

for (int i=0; i<12; i+ +) mystack1 push (i);

for (int i=0; i<20; i++) mystack2 .push (i);

 System.out.println (“Stack in mystack1:”);

for (int i= 0; i<12; i ++)

 system.out.println(mystack1.pop()) ;

System.out.println (“Stack in mystack2:”);

for (int i=0;i<20; i++)

 System.out.println(mystack2.pop ());

 }

}

The following class uses both the FixedStack and DynStack implementation. It does so
through an interface reference. This means that calls to push () and pop() are resolved at
run time rather than at compile time.

 /* Create an iterface variable and

 access stacks through it.

*/

class IFTest 3

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 270

Interface in Java Inner Classes

 {

 public static void main (String args []) {

 IntStack mustack; / / create an interface reference variable

 DynStack ds = new FixedStack (5);

 FixedStack fs =new FixedStack (8);

 mystack= ds; / / load dynamic stack

 / / push some numbers onto the stack

 for (int i=0; i<12;i ++) mystack.push (i);

 mystack = fs; / / load fixed stack

 for (int i =0; i<8; i+ +) mystack.push (i);

 mystack = ds

 System.out.println (“Values in dynamic stack:”)

 for (int i=0; i<12; i++

 system.out.println (mystack.pop ());

 mystack = fs;

System.out.println (“Values in fixed stack:”);

for (int i=0; i<8; i++)

 System.out.println(mystack.pop ()) ;

}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds, it
uses the versions of push () and pop () defined by the DynStack implementation. When it
refers to fs, it uses the versions of push () and pop () defined by FixedStack. As explained,
these determinations are made at run time. Accessing multiple implementations of an
interface through an interface reference variable is the most powerful way that Java achieves
run-time polymorphism.

15.7 Variables in Interfaces

You can use interfaces to import shared constants into multiple classes by simply declaring an
interface that contains variables which are initialized to the desired values. When you
include that interface in a class (that is, when you “implement” the interface,) all of those
variable names will be in scope as constants. This is similar to using a header file in C/C + +

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

271

Object Oriented Programming with C++ and Java

to create a large number of # defined constants or const declaration. If an interface contains
no methods, then any class that includes such an interface doesn’t actually implement
anything. It is as if that class were importing the constant variables into the class name space
as final, variables. The next example uses this technique to implement an automated
“decision maker”.

 import java.util.Random;

interface SharedConstants {

 int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER =3;

int SOON =4;

int NEVER =5 ;

}

class Question implements SharedConstants {

 Random rand = new Random ();

 int ask () {

int prob =(int) (100 * rand. nextDouble());

if (prob < 30)

 return NO; / /30%

else if (prob < 60)

 return YES; / / 30%

else if (prob <75)

 return LATER / / 15%

else if (prob <98)

 return SOON / / 13%

else

 return NEVER / / 2%

 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 272

Interface in Java Inner Classes

}

class AskMe implements sharedConstants {

 static void answer (int result) {

 switch (result) {

 case NO:

 System.out.println (“No”);

 break;

 case YES:

 System.out.println (“yes”);

 break;

 case MAYBE:

 System.out.println (“Maybe”);

 break;

 case LATER:

 System.out.println (“later”);

 break;

 case SOON:

 System.out.println (“soon”);

 break;

 case NEVER:

 Syste.out.println (“Nnever”);

 break;

 }

}

 public static void main (String args [])

 Question q= new Question ();

 answer (q.ask ());

 answer (q.ask ());

 answer (q.ask());

 answer (q.ask ()) ;

 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

273

Object Oriented Programming with C++ and Java

}

Notice that this program makes use of one of Java’s standard classes: Random. This class
provides pseudorandom numbers. It contains several methods which allow you to obtain
random numbers in the form required by your program . In this example, the method
nextDouble () is used. It return random numbers in the range 0.0 to 1.0

In this sample program, the two classes, Question and AskMe, both implement the Shared
Constants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are defined.
Inside each class, the code refers to these constants as if each class had defined or inherited
them directly. Here is the output of a sample run of this program. Note that the result are
different each time it is run.

Later

Soon

No

Yes

15.8 Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the same as for
inheriting classes. When a class implements an interface that inherits another interface, it
must provide implementations for all methods defined within the interface inheritance chain.
Following is an example:

 / / One interface can extend another.

 interface A {

 void meth1 ();

 void meth2 ();

 }

/ / B now includes meth1 () and meth2 () - - it adds meth3 ().

interface B extends A {

 void meth3 ();

}

/ / This class must implement all of A and B

class MyClass implements B {

 public void meth1 () {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 274

Interface in Java Inner Classes

 System.out.println (“Implement meth1 ().”) ;

}

 public void meth2 () {

 system.out.println (“Implement meth2 ());

}

 public void meth3 () {

 System.out.println (“Implement meth3 () .”) ;

 }

}

 class IFExtend {

 public static void main (String arg []) {

 Myclass ob = new Myclass () ;

 ob.meth1();

 ob.meth2();

 ob.meth3();

 }

}

As an experiment you might want to try removing the implementation formeth1 (in
MyClass. This will cause a compile-time error. As stated earlier, any class the implements an
interface must implement all methods defined by that interface, including any that are
inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use for packages or
interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs and applets that you write in Java will be contained within
packages. A number will probably implement interfaces as well. It is important, therefore,
that you be comfortable with their usage.

15.9 Short Summary

 Interfaces are designed to support dynamic method resolution at run time.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

275

Object Oriented Programming with C++ and Java

 If a class includes an interface but does not fully implement the methods defined
by that interface then that class must be declared as abstract.

 When a class implements an interface that inherits another interface, it must

provide implementations for all methods defined within the interface inheritance
chain.

15.10 Brain Storm

1. What is the meaning of Interface?

2. Define the term Interface?

3. How to Implement an Interface?

4. How to use Interfaces for Multiple Classes?

5. How can you extend and Interface?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 276

Garbage Collection

Lecture - 16

Garbage Collection

Objectives

In this lecture you will learn the following

 Garbage Collection

 Finalize Method

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

277

Object Oriented Programming with C++ and Java

Lecture - 16

16.1 Snap Shot

16.2 Garbage Collection

16.3 Finalize Method

16.4 Short Summary

16.5 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 278

Garbage Collection

16.1 Snap Shot

In this lecture you will learn about the meaning of Garbage Collection and the use of
Finalize Method.

16.2 Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later
reallocation. In some languages, such as C++, dynamically allocated objects must be
manually released by use of a delete operator. Java takes a different approach; it
handles reallocation for you automatically. The technique that accomplishes this is
called garbage collection. It works like this: when no references to an object exist, that
object is assumed to be no longer needed, and the memory occupied by the object
can be reclaimed. there is no explicit need to destroy objects as in C++. Garbage
collection only occurs sporadically during the execution of your program. It will not
occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage
collections, but for the most part, you should not have to think about it while writing
your programs.

16.3 The Finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For
example, if an object is holding some non-Java resource such as a file handle or
window character font, then you might want to make sure these resources are freed
before an object is destroyed. To handle such situations, Java provides a mechanism
called finalization. By using finalization, you can define specific actions that will
occur when an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java
runtime calls that method whenever it is about to recycle an object of that class.
Inside the finalize() method you will specify those actions that must be performed
before an object is destroyed. The garbage collector runs periodically, checking for
objects that are no longer referenced by any running state or indirectly through other
referenced objects. Right before an asset is freed, the Java run time calls the finalize()
method on the object.

The finalize() method has this general form:
Protected void finalize()
{
 // Finalization code here

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

279

Object Oriented Programming with C++ and Java

}

Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class.

It is important to understand that finalize() is only called just prior to garbage
collection. It is not called when an object goes out-of-scope, for example. This means
that you cannot know when-or even if – finalize() will be executed. Therefore, your
program should provide other means of releasing system resources, etc., used by the
object. It must not rely on finalize() for normal program operation.

16.4 Short Summary

 In Java the Dynamically Allocated Memories are released Automatically and is

known as Garbage Collection.

 An Object will need to perform some action when it is destroyed, for this Java
provides a mechanism called Finalization.

16.5 Brain Storm

1. What is the Meaning of Garbage Collection and how it is different from C++?

2. What is the use of Finalize Method?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 280

Packages & Class Libraries

Lecture - 17

Packages & Class Libraries

Objectives

In this lecture you will learn the following

 Knowing about Java Packages & Class Libraries

 Overview Access Specifiers

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

281

Object Oriented Programming with C++ and Java

Lecture - 17

17.1 Snap Shot

17.2 Packages

17.3 Defining a Package

17.4 The Java Class Libraries

17.5 Overview Access Specifiers - User defined Package Java.lang

17.6 Short Summary

17.7 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 282

Packages & Class Libraries

17.1 Snap Shot

In this lecture you will learn about the meaning of Packages, Java Class Libraries and
about User Defined Packages.

17.2 Packages

Packages and interfaces are two of the basic components of java program. In general,
a java source file can contain any of the following four internal parts:

A single package statement
Any number of import statements
A single public class declarations
Any number of classes private to the package

Only one of these- the single public class declaration- has been used in the examples
so far. The name of each example class was taken from the same name space. This
means that a unique name had to be used for each class to avoid name collisions.

After a while , without some way to manage the name space, you could run out of
convenient, descriptive names for individual classes. You also need some way to be
assured that the name you choose for a class will be reasonably unique and not
collide with class names chosen by other programmers. Thankfully, Java provides a
mechanism for partitioning the class name space into more manageable chunks.This
mechanism is the package. The package is both a naming and a visibility control
mechanism. You can define classes inside a package that are not accessible by code
outside that package.

You can also define class members that are only exposed to other members of the
same package. This allows your classes to have intimate knowledge of each other,
but not expose that knowledge to the rest of the world.

17.3 Defining a package

To create a package is quite easy: simply include a package command as the first
statement in a Java source file. Any classes declared within that file will belong to
the specified package. The package statement defines a name space in which classes
are stored. If you omit the package statement, the class names are out into the default
package, which has no name. While the default package is fine for short, sample
programs, it is inadequate for real applications. Most of the time, you will define a
package for your code.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

283

Object Oriented Programming with C++ and Java

This is the general form of the package statement:

Package pkg;

Here, pkg is the name of the package. For example, the following statement
creates a package called Mypackage.
package Mypackage;

Java uses file system directories to store packages. For example, the .class files for
any classes you declare to be part of Mypackage must be stored in a directory called
Mypackage. Remember that case is significant, and the directory name must match
the package name exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not
exclude other classes in other files from being part of that same package. Most real-
world packages are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package
statement is shown here:

package pkg1[.pkg2[pkg3]];

A package hierarchy must be reflected in the file system of your java development
system. For example, a package declared as package java.awt.image;

Needs to be stored in java/awt/image,java\awt\image, or java:awt:image on your
UNIX, windows, or Macintosh file system, respectively. Be sure to choose your
package names carefully. You cannot rename a package without renaming the
directory in which the classes are stored.

17.4 The Java class libraries

The built-in methods: println() and print() are members of the System class, which is
a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain
many built-in methods that provide support for such things as I/O, string handling,
networking and graphics. The standard classes also provide support for windowed
output. Thus, Java as a totality is a combination of the Java language itself, plus its
standard classes. As you will see, the class libraries provide much of the

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 284

Packages & Class Libraries

functionality that comes with Java. Indeed, part of becoming a Java programmer is
learning to use the standard Java classes.

17.5 Overview Access Specifiers User defined Package Java.lang

We already know that access to a private member of a class is granted only to other
members of that class. Packages add another dimension to access control. Java
provides many levels of protection to allow fine-grained control over the visibility of
variables and methods within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name
space and scope of variables and methods. Packages act as containers for classes and
other subordinate packages. Classes act as containers for data and code. The class is
java’s smallest unit of abstraction. Because of the interplay between classes and
packages, Java addresses four categories of visibility for class members

Subclasses in the package
Non-subclasses in the package
Subclasses in different package
Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways
to produce the many levels of access required by these categories.

While java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything
declared private cannot be seen outside of its class. When a member does not have an
explicit access specification, it is visible to subclasses as well as to other classes in the
same package. This is the default access. If you want to allow an element to be seen
outside your current package, but only to classes that subclass your class directly,
then declare that element protected.

Private No Modifier Protected Public

 Same class Yes Yes Yes Yes

Same Package
Sub class No yes Yes Yes
Same Package
Non-subclass No Yes Yes Yes
Different

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

285

Object Oriented Programming with C++ and Java

Package
Subclass No No Yes Yes
Different

 Package
Non-subclass No No No Yes

A class has only two possible access levels: default and public. When a class is
declared as public, it is accessible by any other code. If a class has default access, then
it can only be accessed by other code within its same package.

All of the standard java classes included with java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang. normally, you have to import every package or class that you want to use,
but since java is useless without much of the functionality in java.lang, it is implicitly
imported by the complier for all programs. This is equivalent to the following line
being at the top of all of your programs:

Import java.lang.*;

Package

Java 2 adds a class called package that encapsulates version data associated with a

package. Package version information is becoming more important because of the

proliferation of packages and because a java program may need to know what

version of a package is available.

17.6 Short Summary

 Packages and interfaces are two of the basic components of java program.

 The Package statement defines a name space in which classes are stored.

 Anything declared public can be accessed from anywhere. Anything declared

private cannot be seen outside of its class.

17.7 Brain Storm

1. What is the meaning of Packages?

2. How to Define Package?

3. What are the Build-in Java Class Libraries?

4. What is User Defined Packages?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 286

Built-in Classes

Lecture - 18

Built-in Classes

Objectives

In this lecture you will learn the following

 Knowing briefly about types of classes

 Collections of classes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

287

Object Oriented Programming with C++ and Java

Lecture - 18

18.1 Snap Shot

18.2 String & String Buffer Classes

18.3 Math Classes

18.4 Java.util

18.5 Enumeration

18.6 Vector

18.7 Hashtable

18.8 Collection

18.9 Short Summary

18.10 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 288

Built-in Classes

18.1 Snap Shot

In this lecture you will learn about the various in-build functions such as String
Buffer Classes, Math Classes, Java.util , Vector, Hashtable and about Collection .

18.2 String & String Buffer Classes

String is probably the most commonly used class in java’s class library. The obvious reason
for this is that strings are a very important part of programming.

The first thing to understand about strings is that every string you create is actually
an object of type String. Even string constants are actually string objects. For
example, in the statement System.out.println(“this is a string, too”);

the string “This is a String, too” is a String constant. Fortunately, Java handles String
constants in the same way that other computer languages handle “normal” strings,
so you don’t have to worry about this.

The second thing to understand about strings is that objects of type String are
immutable; once a String object is created, its contents cannot be altered. While this
may seem like a serious restriction, it is not , for two reasons:

 If you need to change a string, you can always create a new one that contains the
modifications.

 Java defines a peer class of string, called String buffer , which allows strings to be

altered, so all of the normal string manipulations are still available in Java.

Strings can be constructed a variety of ways. The easiest is to use a statement like
this:

String mystring = “ this is a test”

Once you have created a string object, you can use it anywhere that a string is
allowed. For example, this statement displays mystring:

 System.out.println(mystring);
Java defines one operator for String objects: + . It is used to concatenate two strings.
For example, this statement

String myString = “I”+”like” +”Java.”

Results in myString containing “I like Java”

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

289

Object Oriented Programming with C++ and Java

The following program demonstrates the preceding concepts:
Demonstrating Systems
class StringDemo {
 public static void main(String args[])
{
String s1 = “First String”;
String s2 = “Second String”;
String s3 = s1+ “ and “ + s2;
System.out.println(s1);
System.out.println(s2);
System.out.println(s3);

 }
}
The output produced by this program is shown here:
First string
Second String
First string and Second String

The String class contains several methods that you can use. Here are a few. You can
test two strings for equality by using equals(). You can obtain the length of a string
by calling the length() method. You can obtain the character at a specified index
within a string by calling charAt(). The general forms of these three methods are
shown here:
 Boolean equals(String object)
int length()
char charAt(int index)
 Here is a program that demonstrates these methods:
//Demonstrating some String methods.
class StringDemo2 {

public static void main(String a[])
{
String s1 = “First string”;
String s2 = “Second string”;
String s3 = s1;
System.out.println(“Length of s1 : “ + s1.length());
System.out.println(“char at index 3 in s1 :” +s2.charAt(3));
if(s1.equals(s2))

System.out.println(“s1 == s2”);
else

System.out.println(“s1 != s2”);
 if(s1.equals(s3))

 System.out.println(“s1 == s3”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 290

Built-in Classes

else
System.out.println(“s1 != s3”);

 }
}
The output produced by this program is shown here:
Length of s1 : 12
Char at index 3 in s1 : s
s1 != s2
s1 == s3

The string constructors

The String class supports several constructors. To create an empty String, you call the
default constructor. For example,
 String s = new String();
will create an instance of string with no characters in it.

Frequently, you will want to create strings that have initial values. The string class
provides a variety of constructors to handle this. To create a string initialized by an
array of characters, use the constructor chown here:

 String(char c[]) (Char Chars [])

Here is an example
 Char chars[]={‘a’,’b’,’c’};
 String s = new String(c);
 This constructors initializes s with the string “abc”.
You can specify a sub range of a character array as an initializer using the following
constructor:

String(char chars[],int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and numChars
specifies the number of characters to use. Here is an example:
 char chars[]= { ‘a’, ‘b’,’c’,’d’,’e’,’f’,};
 String s = new String(chars,2,3);
This initializes s with the characters cde.

You can construct a string object that contains the same character sequence as
another string object using this constructor:
 String(String s)
 Here, s is a string object. Consider this example:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

291

Object Oriented Programming with C++ and Java

 //Construct one string from another.
 class MakeString {
 public static void main(String a[]) {
 char c[] = { ‘J’,’a’,’v’,’a’};
 String s1 = new String(c);
 String s2 = new String(s1);
 System.out.println(s1);
 System.out.println(s2);
 }
}
The output from this program is as follows:
Java
Java
As you can see, s1 and s2 contains the same string.

Special String Operations

Because strings are a common and important part of programming, java has added
special support for several string operations within the syntax of the language. These
operations include the automatic creation of new string instances from string literals,
concatenation of multiple string objects by use of the + operator, and the conversion
of other data types to a string representation. There are explicit methods available to
perform all of these functions, but java does them automatically as a convenience for
the programmer and to add clarity.

String Buffer Constructors
StirngBuffer defines these three constructors:
StringBuffer()
StringBuffer(int size)
StringBuffer(String str)

The default constructor (the one with no parameters) reserves room for 16 characters
without deallocation. The second version accepts an integer arguments that explicitly
sets the size of the buffer. The third version accepts a String argument that characters
without reallocation. StringBuffer allocates room for 16 additional characters when
no specific buffer length is requested, because reallocation is a costly allocating room
for a few extra characters, StringBuffer reduces the number of reallocations that take
place.

Length() and capacity()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 292

Built-in Classes

The current length of a StringBuffer can be found via the length() method, while the
total allocated capacity can be found through the capacity() method. They have the
following general forms:
int length()
int capacity()
//StringBuffer length vs. capacity.
class StringBufferDemo
{
public static void main(string args[]){

StringBuffer sb = new StringBuffer(“Hello”);
 System.out.println(“buffer =” +sb);
System.out.println(“length =” +sb.length());
System.out.println(“Capacity = “ +sb.capacity());
}
}

Here is the output of this program, which shows how StringBuffer reserves extra
space for additional manipulations:

buffer = Hello
length = 5
capacity = 21

Since sb is initialized with the string “Hello” when it is created, its length is 5. Its
capacity is 21 because room for 16 additional characters is automatically added.

18.3 Math Classes

The Math class contains all the floating- point functions that are used for
geometry and trigonometry, as well as several general-purpose methods.
Math defines two double constants: E and PI

Transcendental Functions

 Method Description
Static double sin(double arg) Returns the sine of the angle specified by
 arg in radians.

Static double asin(double arg) Returns the angle whose sine is
specified by arg.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

293

Object Oriented Programming with C++ and Java

Static double cos(double arg) Returns the cosine of the angle specified by
 arg in radians.

Static double tan(double arg) Returns the sine of the tangent specified by
 arg in radians.

Static double acos(double arg) Returns the angle whose cosine is
specified by arg.

Static double atan(double arg) Retuns the angle whose tangent is
specified by arg.

Static double atan2 Returns the angle whose tangent is x/y.
(double x, double y) Exponential Functions

Exponential Functions

Math defines the following exponential methods.

Method Description
Static double exp(double arg) Returns e to the arg.
Static double log(double arg) Returns the natural logarithm of arg.
Static double pow Returns y raised to the x; for example
(double y, double x) Pow(2.0,3.0) returns 8.0.
Static double squrt(double arg) Returns the square root of arg.

Rounding Functions

The Math class defines several methods that provide various types of rounding
operations . They are shown in Table .

Method Description
Static int abs(int arg) Returns the absolute value of arg.

Static long abs(float arg) Returns the absolute value of arg.
Static float abs(float arg) Returns the absolute value of arg.
Static double abs(double a) Returns the absolute value of arg.
Static double ceil(double a) Returns the smallest whole number greater than

or equal to arg.
Static double floor(double a) Returns the largest whole number less than or

equal to arg.
Static int max(int x, int y) Returns the maximum of x and y.
Static long max(long x, long y) Returns the maximum of x and y.
Static float max(float x, float y) Returns the maximum of x and y.
Static double max Returns the maximum of x and y.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 294

Built-in Classes

(double x, double y)

Static int min(int x, int y) Returns the minimum of x and y.
Static long min(long x, long y) Returns the minimum of x and y.
Static float min(float x, float y) Returns the minimum of x and y.
Static double min Returns the minimum of x and y.
(double x, double y)
Static double rint(double arg) Returns the integer nearest in value to arg.
Static int round(float arg) Returns arg rounded up to the nearest int.
Static long round(double arg) Returns arg rounded up to the nearest long.

18.4 Java.util

The java.util package contains some of the most exciting enhancements added by
java 2: collections. A collection is a group of objects. The addition of collections
caused fundamental alternation in the structure and architecture of many elements in
java.util. It also expanded the domain of tasks to which the package can be applied.
Collections are a state-of-the-art technology that merits close attention by all java
programmers.

In addition to collection, java.util contains a wide assortment of classes and
interfaces that support a broad range of functionality. These classes and interfaces
are used throughout the core java packages and, of course, are also available for use
in programs that you write. Their applications include generating pseudorandom
numbers, manipulating date and time, observing events, manipulating sets of bits,
and tokenizing strings. Because of its many features, java.util is one of Java’s most
widely used packages.

The java.util classes are listed here. The ones added by Java 2 are so labled.

AbstractCollection EventObject PropertyResourceBundle

AbstractList GregorianCalendar Random

AbstractMap HashMap ResourceBundle

AbstractSequentialList HashSet SimpleTimeZone

AbstractSet Hashtable Stack

ArrayList LinkedList StringTokenizer

Arrays ListResourceBundle TimeZone

Bitset Locale TreeMap

Calendar Observable TreeSet

Collections Properties Vector

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

295

Object Oriented Programming with C++ and Java

Date PropertyPermission WeakHashMap

Dictionary

Java.util defines the following interfaces. Notice that most were added by java 2.

Collection List Observer

Comparator ListIterator Set
Enumeration Map SortedMap
EventListener Map.Entry SortedSet
Iterator

The ResourceBundle, ListResourceBundle, and PropertyResourceBundle classes
aid in the internationalization of large programs with many locale-specific resources.
These classes are not examined here.

18.5 Enumeration

The enumeration interface defines the methods by which you can enumerate the
elements in a collection of objects. Iterator has superceded this legacy interface.
Although not deprecated, Enumeration is considered obsolete for new code.
However, it is used by several methods defined by the legacy classes, is used by
several other API classes, and is currently in wide spread use in application code.

 Enumeration specifies the following two methods:

 Boolean hasMoreElements()

 Object nextElement()

When implemented, hasMoreElements() must return true while there are still more
elements to extract, and false when all the elements have been enumerated.
nextElement() returns the next objects in the enumeration as a generic Object
reference. That is, each call to nextElement() obtains the next object in the
enumeration. The calling routine must cast that object into the object type held in the
Enumeration.

18.6 Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two
differences: Vector is synchronized, and it contains many legacy methods that are
not part of the collections framework. With the release of java2, vector was

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 296

Built-in Classes

reengineered to extend AbstractList and implement the list interface, so it now is
fully compatible with collections.
Here are the vector constructors.

Vector()

Vector(int size)

Vector(int size, int incr)

Vector(Collection c)

The first form creates a default vector, which has an initial size of 10. The second
form creates a vector whose initial capacity is specified by size. The third form
creates a vector whose initial capacity is specifies the number of elements to allocate
each time that a vector is resized upward. The fourth form creates a vector that
contains the elements of collection c. This constructor was added by Java2.
 Vector defines these protected data members:

 int capacityIncrement;

 int elementCount;

 Object elementData [];

The increment value is stored in capacity increment. The number of elements
currently in the vector is stored in elementCount. The array that holds the vector is
stored in elementData.

In addition to the collection methods defined by List, Vector defines several legacy
methods, which are shown in Table .

Because Vector implements List you can use a vector just like you use an ArrayList instance.
You can also manipulate one using its legacy methods. For example, after you instantiated a
Vector, you can add an element to it by calling addElement (). To obtain the element at a
specific location, call elementsAt (). To obtain the first element in the vector, call
firstElement (). To retrieve the last element, call lastElement (). You can obtain the index of
an element by using indesOf() and lastInsdexOf (). To remove an element, call
removeElement () or removeElement().

Method Description

final void addElement(Object element) The object specified by element is added
to the vector.

final int capacity() Returns the capacity of the vector.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

297

Object Oriented Programming with C++ and Java

Object clone() Returns a duplicate of the invoking
vector.

final boolean contains(Object element) Returns true if element is contained by
the vector, and returns false if it is not.

final void copyInto(Object array[]) The elements contained in the invoking
vector are copied into the array specified
by array.

final Object elementAt(int index) Returns the element at the location
specified by index.

final Enumeration elements() Returns an enumeration of the elements
in the vector.

final void ensureCapacity(int size) Sets the minimum capacity of the vector
to size.

Final void insertElementAt Adds element to the vector at the
(Object element, int index) location specified by index.

18.7 Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a
dictionary. However, Java2 reengineered Hashtable so that it also implements the
map interface. Thus, Hashtable is now integrated into the collections framework. It is
similar to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hash table. When using a
Hashtable, you specify an object that is used as a key, and the value that you want
linked to that key. The key is then hashed, and the resulting hash code is used as the
index at which the value is stored within the table.
A hash table can only store objects that override the hashCode() and equals()
methods that are defined by object. The hashCode() method must compute and
return the hash code for the object. Of course, equals() compares two objects.
Fortunately, many of Java’s built-in classes already implement the hashCode()
method. For example, the most common type of Hashtable uses a String object as the
key. String implements both hashCode() and equals().

The Hashtable constructors are shown here:

 Hashtable()
 Hashtable(int size)
 Hashtable(int size, float fillratio)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 298

Built-in Classes

 Hashtable(Map m)

The first version is the default constructor. The second version creates a hash table
that has an initial size specified by size. The third version creates a hash table that
has an initial size specified by size and a fill ratio specified by fillratio. This ratio
must be between 0.0 and 1.0. and it determines how full the hash table is expected. If
you do not specify a fill ratio, then 0.75 is used. Finally, the fourth version creates a
hash table that is initialized with the elements in m. The capacity of the hash table is
set to twice the number of elements in m. The default load factor of 0.75 is used. The
fourth constructor was added by Java 2.

In addition to the methods defined by the Map interface, which Hashtable now
implements, Hashtable defines the legacy methods

 Method Description

void clear() Resets and empties the hash table.

Object clone() Returns a duplicate of the invoking
 object.

boolean contains(Object value) Returns true if some value equal to value
 exists within the Hashtable . Returns
 false if the value isn't found.

boolean containsKey(Object key) Returns true if some key equal to key exists within
the hashtable. Returns false if the key isn’t found.

18.8 Collection

The Java collections framework standardizes the way in which groups of objects are
handled by your programs. In the past, Java provided ad hoc classes such as
Dictionary, vector,stack and properties to store and manipulate groups of objects.
Although these classes were quite useful, they lacked a central, unifying theme.
Thus, the way that you used vector was different from the way that you used
properties, for example. Also, the previous, ad hoc approach was not designed to be
easily extensible or adaptable. Collections are an answer to these problems.

The collections framework was designed to meet several goals. First, the framework
had to be high-performance. The implementations for the fundamental collections
are highly efficient. You seldom, if ever, need to code one of these “data engines”
manually. Second, the framework had to allow different types of collections to work
in a similar manner and with a high degree of interoperability. Third, extending and
/or adapting a collection had to be easy. Toward this end, the entire collections

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

299

Object Oriented Programming with C++ and Java

framework is designed around a set of standard interfaces. Several standard
implementations of these interfaces are provided that you may use as-is. You may
also implement your own collection class easier. Finally, Mechanisms were added
that allow the integration of standard arrays into collections framework.

Algorithms are another important part of the collection mechanism. Algorithms
operate on collections and are defined as static methods within the collections class.
Thus, they are available for all collections. Each collection class need not implement
its own versions. The algorithms provide a standard means of manipulating
collections.

Another item created by the collections framework is the Iterator interface. An
Iterator gives you a general-purpose, standardized way of accessing the elements
within a collection, one at a time. Thus , an iterator provides a means of enumerating
the contents of a collection. Because each collection implements Iterator, the
elements of any collection class can be accessed through the methods defined by
Iterator. Thus, with only small changes, the code that cycles through a set can also be
used to cycle through a list, for example.

In addition to collection, the framework defines several map interfaces and classes.
Map store key/value pairs. Although maps are not “collections” in the proper use of
the term, they are fully integrated with collections. In the language of the collections
framework, you stored in a collection . Thus, you can process the contents of a map
as a collection. If you choose.

The collection mechanism was retrofitted to some of the original classes defined by
java.util so that they too could be integrated into the new system. It is important to
understand that although the addition of collections has altered the architecture of
many of the original utility classes, it has not caused the deprecation of any.
Collections simply provide a better way of doing several things.

One last thing: if you are familiar with c++, then you will find it helpful to know that
the java collections technology is similar in sprit to the standard template library
defined by c++. What c++ calls a container, java calls a collection.

18.9 Short Summary

 Once you have created a string object, you can use it anywhere that a string is
allowed.

 The math class contains all the floating- point functions that are used for
geometry and trigonometry, as well as several general-purpose methods.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 300

Built-in Classes

 The java.util package contains some of the most exciting enhancements added by
Java 2: collections.

 Hashtable was part of the original java.util and is a concrete implementation of a
dictionary

 The Java collections framework standardizes the way in which groups of objects
are handled by your programs.

18.10 Brain Storm

1. What is the use of String Class?

2. Explain the Math Class.

3. What is Enumerator?

4. Explain the Java.util class.

5. How the Vector Implements the Dynamic Array?

6. What is the use of Hashtable?

7. Explain the Collection Object.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

301

Object Oriented Programming with C++ and Java

Lecture - 19

Exception Handling

Objectives

In this lecture you will learn the following

 Knowing all types of exception

 Throw , Try and Catch Blocks

 The Finally Clause

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 302

Exception Handling

Lecture - 19

19.1 Snap Shot

19.2 Exception Handling

19.3 Exception Types

19.4 Throw , Try and Catch Blocks

19.5 The Finally Clause

19.6 Short Summary

19.7 Brian Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

303

Object Oriented Programming with C++ and Java

19.1 Snap Shot

Error conditions that are not expected to occur under normal conditions are called
exceptions. When an exception occurs, bad things happen. For example, a negative
number is passed to a function that computes the square root of a number. The
function expects all numbers it receives to be positive real numbers. It receives a
negative number instead, and an exception occurs. Sometimes programs die right
then and there; other times they do more insidious things, such as passing incorrect
pointers that eventually access protected areas of the system.

Although there is no definitive way to handle exceptions in C++, any bleary-eyed
C++ programmers will be happy to know that exceptions are a fundamental part of
the Java programming language. In Java if you call a method that could throw an
exception, you must check to see if any of the possible exceptions occurred and
handle them. Additionally, the Java compiler checks for exception handling and will
tell you if you have not handled the exceptions for a particular method.

There are problem that are beyond program control, and therefore also beyond the
programmer’s control. these include problems such as running out of memory. other
nonprogrammatic problems are the network being down or a hardware failure.

There are two main classes of problems in java: errors and exceptions. errors are
caused by problems in java itself and are generally of too detailed a nature for the
program itself to solve. when an error is encountered, java generates an error
message to the screen and aborts the program.

19.2 Exception Handling Fundamentals

A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method that caused the
error. That methods may choose to handle the exception itself, or pass it on. Either
way, at some point the exception is caught and processed. Exceptions can be
generated by the Java run-time system, or they can be manually generated by your
code. Exceptions thrown by Java relate to fundamental errors that violate the rules of
the Java language or the constraints of the Java execution environment . Manually
generated exceptions are typically used to report some error condition to the caller of
a method.

Java exception handling is managed via five keywords; try catch, throw, throws, and
finally. Briefly here is how they work. Program statements that you want to monitor
for exceptions are contained within a try block. If an exception occurs within the try

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 304

Exception Handling

block, it is thrown. Your code can catch this exception (using catch) and handle it in
some rational manner. System-generated exceptions are automatically thrown by the
Java run-time system. To manually throw an exception, use the keyword throw. Any
exception that is thrown out of a method must be specified as such by a throws
clause. Any code that absolutely must be executed before a method returns is put in
a finally block.

This is the general form of an exception-handling block:

try{

/ / block of code to monitor for errors

}
catch (ExceptionType1 exOb){

/ / exception handler for Exception Type1

}
catch (ExceptionType2 exOb) {

/ / exception handler for Exception Type2

}

/ / …

finally{

/ / block of code to be executed before try block ends.
}

Here Exception type is the type of exception that has occurred. The remainder of this
chapter describes how to apply this framework.

19.3 Exception Types

All exception types are subclasses of the built in class Throwable. Thus,
Throwable is at the top of the exception class hierarchy. Immediately below
Throwable are two subclasses that partition exceptions into two distinct
branches. One branch is headed by Exception. This class is used is used for
exceptional conditions that user programs should catch. This is also the class
that you will subclass to create your own custom exception types. There is an
important subclass of Exception ,called RuntimeException. Exceptions of this
type are automatically defined for the programs that you write and include
things such as division by zero and invalid array indexing.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

305

Object Oriented Programming with C++ and Java

The other branch is topped by Error, which defines exceptions that are not
expected to be caught under normal circumstances by your program.
Exceptions of type Error are used by the Java run-time system to indicate
errors having to do with the run-time environment, itself. Stack overflow is
an example of such an error. This chapter will not be dealing with exceptions
of type Error, because these are typically created in response to catastrophic
failures that cannot usually be handled by your program.

Uncaught Exceptions

Before you learn how to handle exceptions in your program, it is useful to see
what happens when you don’t handle them. This small program includes an
expression that intentionally causes a divide by zero error.

 Class Exc0 {
 public static void main(string args[]) {
 int d= 0;
 int a =42 / d;
 }
}

When the java run time system detects the attempt to divide by zero, it
constructs a new exception object and then throws this exception. This causes
the execution of EXC0 to stop, because once an exception has been thrown, it
must be caught by an exception handler and dealt with immediately. In this
example, we haven’t supplied any exception handlers of our own, so the
exception is caught by the default handler provided by the Java run-time
system. Any exception that is not caught by your program will ultimately be
processed by the default handler. The default handler displays a string
describing the exception, prints a stack trace from the point at which the
exception occurred, and terminated the program.

Here is the output generated when this example is executed by the standard
Java JDK run-time interpreter:

 java.lang.ArithmeticException:/ by zero
 at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename,
Exc0.java; and the line number , 4, are all included in the simple stack trace.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 306

Exception Handling

Also, notice that the type of the exception thrown is a subclass of Exception
called Arithmetic Exception, which more specifically describes what type of
error happened. As disculled later in this chapter Jave suppplies several built
in exception types that match the various sorts of run-time errors that can be
generated .

The stack trace will always show the sequence of method invocations that led
up to the error. For example, here is another version of the preceding
program that introduces the same error but in a method separate from main();

 class Excl{
 static void subroutine() {
 int = 0;
 int a =10/d;
 }
 public static void main (string args[]) {
 Excl.subroutine();
}
}

The resulting stack trace from the default exception handler shows how the
entire call stack is displayed;

java.lang.ArithmeticException : / by zero

at Excl.subrooutine(Excl.java:4)
at Excl.main(Excl.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to
subroutine(), which caused the exception at line4. The call stack is quite
useful for debugging, because it pinpoints the precise sequence of steps that
led to the error.

Using try and catch

Although the default exception handler provided by the Java run-time
system is useful for debugging, you will usually want to handle an exception
yourself. Doing so provides two benefits. First, it allows you to fix the error.
Second, it prevents the program from automatically terminating. Most users
would be confused if your program stopped running and printed a stack
trace whenever an error occurred! Fortunately it is quite easy to prevent this.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

307

Object Oriented Programming with C++ and Java

To guard against and handle a run-time error, simply enclose the code that
you want to monitor inside a try block. Immediately following the try block,
include a catch cluse that specifies the exception type that you wish to catch.
To illustrate how easily this can be done, the following program includes a try
block and a catch clause which processes the ArithmeticException generated
by the division-by-zero error.

class Exc2 {
 public static void main (String args[]) {
 int d,a;
 try { // monitor a block of code.
 d=0;
 a=42/d;
 system.out.println(“This will not be printed.”);
 } catch (ArithmeticException e) { // catch divide-by-zero error
 System.out.println(“Division by zero.”);
}
System.out.println(“After catch statement”);
}

This program generates the following output:
 Division by Zero
 After catch statement.
Notice that the call println () inside the try block is never executed. Once an
exception is thrown, program control transfers out of the try block into the
catch block.

Put differently, catch is not “called” so execution never “returns” to the try
block from a catch. “Thus, the line this will not be printed”. is not displayed.
Once the catch statements has executed, program control continues with the
next line in the program following the entire try/catch mechanism.

A try and its catch statement form a unit. The scope for the catch clause is
restricted to those statements specified by the immediately preceding try
statement. A catch statement cannot catch an exception thrown by another try
statement (except in the case of nested try statements, described shortly.) The
statements that are protected by try must be surrounded by curly braces.
(That is they must be within a block). You cannot use try on a single
statement.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 308

Exception Handling

The goal of most well constructed catch clauses should be to resolve the
exceptional condition and then continue on as if the error has never happened
. For example, in the next program each interaction of the for loop obtains two
random integers. Those two integers are divided by each other, and the result
is used to divide the value 12345. The final result is put into a. If either
division operation causes a divide by zero error , it is caught, the value of a is
set to zero, and the program continues.

Exception Methods

Most Java exception handling is performed using the try, catch,throw and
finally methods. Ofcourse, these methods can be extended if some unusual
circumstance requires it.

Java uses the try, catch, and throw keywords to do actual exception handling.
They are conceptually similar to a switch statement; think of try like the
switch statement interms of exactly identifying the condition to be tested.

Catch is used to specify the action that should be taken for a particular type of
exception. It is similar to the case part of a switchstatement. There can be
several catch statements in a row to deal with each of the exceptions that may
be generated in the block specified by the try statement.

Throw

Understanding exception handling in Java requires that you learn some new
terminology. The first concept you need to grasp is that of throwing an
exception, Java’s name for causing an exception to be generated. For example
say a method was written to read a file. If the methodcould not read the file
because the file did not exist, this would generate an IOExecption. In Java
terminology, it is said that the method threw an IOException.

Think of it as a horse throwing a shoe: You must stop everything before real
damage is done.

Catch

The next term to learn in Java exception handling is catch. An exception catch
is code that realizes the exception has occurred and deals with it
appropriately. In java terms, you say a thrown exception gets caught.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

309

Object Oriented Programming with C++ and Java

In the case of the IOException thrown because of the nonexistence file
mentioned in the previous section, the catch statement writes an error
message to the screen stating that the specified file does not exist. It then
allows the user to try entering a different filename if the first was incorrect, or
it may exit. In Java terminology, the IOException was caught.

Try

Try is the java exception handling term that means a Java program is going to
try to execute a block of code that might generate(throw) an exception. The
try is way of telling the compiler that some attempt will be made to deal with
at least some of the exceptions generated by the block of code.

Finally

The finally statement is used to specify the action to take if none of the
previous catch statements specifically deals with the situation. It is similar to
the default part of a switch statement, finally is the big net that catches
everything that falls out of the exception handling statement.
An Example with try, catch, and finally

The following example is the standard structure for Java exception handling,
incorporating try, catch, and finally;

try{
 statement that generates an exception
}
catch(ExceptionType1 e) {
 process exception type 1
}
 catch(ExceptionType2 e) {
 process exception type2
}
finally {
 process all other exception types
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 310

Exception Handling

Using try in exception handling try is used to inform Java that a block of code
may generate an exception and that some processing of that exception will be
done immediately following the try. The syntax of try is

 try statement;
 or

try {
 statement (s)}

The statement try begins the try construct and is followed by a statement or
block containing the code that might generate an exception. this code could
consist of several statements, one or more of which may generate an
exception.

If any one statement generates an exception, the remaining statements in the
block are skipped an execution continues with the first statement following
the try construct, which must be a catch or finally statement. This is an
important point to remember. It is an easy way to determine whilch block of
code should be skipped if an error occurs. Here is an example:

public class Mymain {
 public static void main (String args[]) {
 int[] myArray =new int[10];
 try{
System.output.println(“Before valid array assignment) ;
Myarray[0]=1;
System.output.println(“Before valid array assignment);
MyArray[100]=1;
System.output.println(“After array exception”);
}
}
}

In this example the array MyArray is created with a length of 10. This is
followed by a try statement that contains several statements. The First, Third,
and Fifth statements simply write trace messages to the screen. The Second
statement contains a standard assignment statement that assigns the value 1
to array element 0. The Third statement also assigns an array, but attempts to

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

311

Object Oriented Programming with C++ and Java

assign a value of 1 to element 100 of the array. Because the array is only 10 in
size, this generates an ArrayIndexOutBounds exception.

In tracing the execution of the block of code following the try statement, the
first three statements are executed normally. The Fourth statement, the
invalid assignment, will strt to execute and then generate an exception, which
causes execution to continue at the end of the block, skipping the Fifth
statement.

A Compilation error will result if you attempt to compile this code as it stands
because any try statement must be followed immediately by one or more
catch or finally statements. No othertype of statement is allowed after the
end of the try statement and before the first catch or finally statement.

19.4 Throw, Try and Catch Blocks

To respond to an exception, the call to the method that produces it must be placed
within a try block. A try block is a block of code beginning with the try keyword
followed by a left and a right curly brace. Every try block is associated with one or
more catch blocks. Here is a try block:

try
 {
 // method calls go here
 }

If a method is to catch exceptions thrown by the methods it calls, the calls must be
placed within a try block. If an exception is thrown, it is handled in a catch block.
Different catch blocks handle different types of exceptions. This is a try block and a
catch block set up to handle exceptions of type Exception:

try
 {
 // method calls go here
 }
catch(Exception e)
 {
 // handle exceptions here
 }

When any method in the try block throws any type of exception, execution of the try
block ceases. Program control passes immediately to the associated catch block. If the
catch block can handle the given exception type, it takes over. If it cannot handle the
exception, the exception is passed to the method's caller. In an application, this

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 312

Exception Handling

process goes on until a catch block catches the exception or the exception reaches the
main() method uncaught and causes the application to terminate.

An Exceptional Example

Because all Java methods are class members, the passingGrade() method is
incorporated in the gradeTest application class. Because main() calls passingGrade(),
main() must be able to catch any exceptions passingGrade() might throw. To do this,
main() places the call to passingGrade() in a try block. Because the throws clause lists
type Exception, the catch block catches the Exception class.

//The gradeTest application.

import Java.io.* ;
import Java.lang.Exception ;
public class gradeTest {

 public static void main(String[] args) {

 try
 {
 // the second call to passingGrade throws
 // an excption so the third call never
 // gets executed

 System.out.println(passingGrade(60, 80)) ;
 System.out.println(passingGrade(75, 0)) ;
 System.out.println(passingGrade(90, 100)) ;
 }
 catch(Exception e)
 {
 System.out.println("Caught exception --" +
 e.getMessage()) ;
 }
 }

 static boolean passingGrade(int correct, int total)
 throws Exception {

 boolean returnCode = false ;

 if(correct > total) {
 throw new Exception("Invalid values") ;
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

313

Object Oriented Programming with C++ and Java

 if ((float)correct / (float)total > 0.70) {
 returnCode = true ;
 }

 return returnCode ;
 }

}

The second call to passingGrade() fails in this case, because the method checks to see
whether the number of correct responses is less than the total responses. When
passingGrade() throws the exception, control passes to the main() method. In this
example, the catch block in main() catches the exception and prints Caught exception
-- Invalid values.

Multiple catch Blocks

In some cases, a method may have to catch different types of exceptions. Java
supports multiple catch blocks. Each catch block must specify a different type of
exception:

try
 {
 // method calls go here
 }
catch(SomeExceptionClass e)
 {
 // handle SomeExceptionClass exceptions here
 }
catch(SomeOtherExceptionClass e)
 {
 // handle SomeOtherExceptionClass exceptions here
 }

When an exception is thrown in the try block, it is caught by the first catch block of
the appropriate type. Only one catch block in a given set will be executed. Notice that
the catch block looks a lot like a method declaration. The exception caught in a catch
block is a local reference to the actual exception object. You can use this exception
object to help determine what caused the exception to be thrown in the first place.

A method that ignores exceptions thrown by the method it calls.

import Java.io.* ;
import Java.lang.Exception ;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 314

Exception Handling

public class MultiThrow {

 public static void main(String[] args) {

 try
 {
 foo() ;
 }
 catch(Exception e)
 {
 System.out.println("Caught exception " +
 e.getMessage()) ;
 }

 }

 static void foo() throws Exception {

 bar() ;

 }

 static void bar() throws Exception {

 throw new Exception("Who cares") ;

 }

}

In the example main() calls foo() which calls bar(). Because bar() throws an exception
and doesn't catch it, foo() has the opportunity to catch it. The foo() method has no
catch block, so it cannot catch the exception. In this case, the exception propagates up
the call stack to foo()'s caller, main().

// A method that catches and re throws an exception.

import java.io.* ;
import java.lang.Exception ;
public class MultiThrow {

 public static void main(String[] args) {
 try
 {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

315

Object Oriented Programming with C++ and Java

 foo() ;
 }
 catch(Exception e)
 {
 System.out.println("Caught exception " +
 e.getMessage()) ;
 }

 }

 static void foo() throws Exception {

 try
 {
 bar() ;
 }
 catch(Exception e)
 {
 System.out.println("Re throw exception -- " +
 e.getMessage()) ;
 throw e ;
 } }

 static void bar() throws Exception {

 throw new Exception("Who cares") ;

 }
}

The foo() method calls bar(). The bar() method throws an exception and foo() catches
it. In this example, foo() simply rethrows the exception, which is ultimately caught in
the application's main() method. In a real application, foo() could do some processing
and then rethrow the exception. This arrangement allows both foo() and main() to
handle the exception.

 The Throwable Class

All exceptions in Java are sub classed from the class Throwable. If you want to create
your own exception classes, you must subclass Throwable. Most Java programs do
not have to subclass their own exception classes.

Following is the public portion of the class definition of Throwable:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 316

Exception Handling

public class Throwable {

 public Throwable() ;
 public Throwable(String message) ;
 public String getMessage()
 public String toString() ;
 public void printStackTrace() ;
 public void printStackTrace(java.io.PrintStream s) ;
 private native void printStackTrace0(java.io.PrintStream s);
 public native Throwable fillInStackTrace();
}

The constructor takes a string that describes the exception. Later, when an exception
is thrown, you can call the getMessage() method to get the error string that was
reported.

The methods of the Java API and the language itself also throw exceptions. These
exceptions can be broken into two classes: Exception and Error.

Both the Exception and Error classes are derived from Throwable. Exception and its
subclasses are used to indicate conditions that may be recoverable. Error and its
subclasses indicate conditions that are generally not recoverable and should cause
your applet to terminate.

The various packages included in the Java Developers Kit throw different kinds of
Exception and Error exceptions, as described in the following sections.

java.lang Exceptions

The java.lang package contains much of the core Java language. The exceptions
subclassed from RuntimeException do not have to be declared in a method's throws
clause. These exceptions are considered normal and nearly any method can throw
them.
The java.lang exceptions.

Exception Cause
ArithmeticException Arithmetic error condition (for

example, divide by zero).
ArrayIndexOutOfBoundsException Array index is less than zero or greater

than the actual size of the array.
ArrayStoreException Object type mismatch between the

array and the object to be stored in the
array.

ClassCastException Cast of object to inappropriate type.
ClassNotFoundException Unable to load the requested class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

317

Object Oriented Programming with C++ and Java

CloneNotSupportedException Object does not implement the
cloneable interface.

Exception Root class of the exception hierarchy.
IllegalAccessException Class is not accessible.
IllegalArgumentException Method receives an illegal argument.
IllegalMonitorStateException Improper monitor state (thread

synchronization).
IllegalThreadStateException The thread is in an improper state for

the requested operation.
IndexOutOfBoundsException Index is out of bounds.
InstantiationException Attempt to create an instance of the

abstract class.
InterruptedException Thread interrupted.
NegativeArraySizeException Array size is less than zero.
NoSuchMethodException Unable to resolve method.
NullPointerException Attempt to access a null object

member.
NumberFormatException Unable to convert the string to a

number.
RuntimeException Base class for many java.lang

exceptions.
SecurityException Security settings do not allow the

operation.
StringIndexOutOfBoundsException Index is negative or greater than the

size of the string.

The java.lang errors.

Error Cause
AbstractMethodError Attempt to call an abstract method.
ClassCircularityError This error is no longer used.
ClassFormatError Invalid binary class format.
Error Root class of the error hierarchy.
IllegalAccessError Attempt to access an inaccessible

object.
IncompatibleClassChangeError Improper use of a class.
InstantiationError Attempt to instantiate an abstract class.
InternalError Error in the interpreter.
LinkageError Error in class dependencies.
NoClassDefFoundError Unable to find the class definition.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 318

Exception Handling

NoSuchFieldError Unable to find the requested field.
NoSuchMethodError Unable to find the requested method.
OutOfMemoryError Out of memory.
StackOverflowError Stack overflow.
ThreadDeath Indicates that the thread will

terminate. May be caught to perform
cleanup. (If caught, must be rethrown.)

UnknownError Unknown virtual machine error.
UnsatisfiedLinkError Unresolved links in the loaded class.
VerifyError Unable to verify bytecode.
VirtualMachineError Root class for virtual machine errors.

java.io Exceptions

The classes in java.io throw a variety of exceptions. Any classes that work with I/O
are good candidates to throw recoverable exceptions. For example, activities such as
opening files or writing to files are likely to fail from time to time. The classes of the
java.io package do not throw errors at all.

The java.io exceptions

Exception Cause
IOException Root class for I/O exceptions.

EOFException End of file.

FileNotFoundException Unable to locate the file.

InterruptedIOException I/O operation was interrupted.
Contains a bytesTransferred member
that indicates how many bytes were
transferred before the operation was
interrupted.

UTFDataFormatException Malformed UTF-8 string.

java.awt Exceptions

The AWT classes have members that throw one error and one exception:

• AWTException (exception in AWT)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

319

Object Oriented Programming with C++ and Java

• AWTError (error in AWT)

java.util Exceptions

The classes of java.util throw the following exceptions:

• EmptyStackException (no objects on stack)

• NoSuchElementException (no more objects in collection)

Built-In Exceptions

In the example you see how the automatic exceptions in Java work. This application
creates a method and forces it to divide by zero. The method does not have to
explicitly throw an exception because the division operator throws an exception
when required.

// An example of a built-in exception.

import java.io.* ;
import java.lang.Exception ;

public class DivideBy0 {
 public static void main(String[] args) {

 int a = 2 ;
 int b = 3 ;
 int c = 5 ;
 int d = 0 ;
 int e = 1 ;
 int f = 3 ;

 try
 {
 System.out.println(a+"/"+b+" = "+div(a, b)) ;
 System.out.println(c+"/"+d+" = "+div(c, d)) ;
 System.out.println(e+"/"+f+" = "+div(e, f)) ;
 }
 catch(Exception except)
 {
 System.out.println("Caught exception " +
 except.getMessage()) ;
 }
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 320

Exception Handling

 static int div(int a, int b) {

 return (a/b) ;

 }

}
The output of this application is shown here:
2/3 = 0
Caught exception / by zero

The first call to div() works fine. The second call fails because of the divide-by-zero
error. Even though the application did not specify it, an exception was thrown-and
caught. So you can use arithmetic in your code without writing code that explicitly
checks bounds.

19.5 The finally Clause

Finally, for finally. Suppose there is some action that you absolutely must do, no
matter what happens. Usually, this is to free some external resource after acquiring
it, to close a file after opening it, or something similar. To be sure that “no matter
what” includes exceptions as well, you use a clause of the try statement designed for
exactly this sort of thing, finally:

SomeFileClass f = new SomeFileClass();

if (f.open(“/a/file/name/path”)) {

 try {

 someReallyExceptionalMethod();

 } finally {

 f.close();

 }

}

This use of finally behaves very much like the following

SomeFileClass f = new SomeFileClass();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

321

Object Oriented Programming with C++ and Java

if (f.open(“/a/file/name/path”)) {

 try {

 someReallyExceptionalMethod();

 } catch (Throwable t) {

 f.close();

 throw t;

 }

}

except that finally can also be used to clean up not only after exceptions but after
return, break, and continue statements as well. Here’s a complex demonstration:

public class MyFinalExceptionalClass extends ContextClass {

 public static void main(String args[]) {

 int mysteriousState = getContext();

 while (true) {

 System.out.print(“Who “);

 try {

 System.out.print(“is “);

 if (mysteriousState == 1)

 return;

 System.out.print(“that “);

 if (mysteriousState == 2)

 break;

 System.out.print(“strange “);

 if (mysteriousState == 3)

 continue;

 System.out.print(“but kindly “);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 322

Exception Handling

 if (mysteriousState == 4)

 throw new UncaughtException();

 System.out.print(“not at all “);

 } finally {

 System.out.print(“amusing man?\n”);

 }

 System.out.print(“I’d like to meet the man “);

 }

 System.out.print(“Please tell me.\n”);

 }

}

Here is the output produced depending on the value of mysteriousState:

1. Who is amusing man?

2. Who is that amusing man?

 Please tell me

3. Who is that strange amusing man?
 ...

4. Who is that strange but kindly amusing man?

5. Who is that strange but kindly not at all amusing man?

 I’d like to meet the man Who is that strange...?
 ...

The exception handling mechanism in Java allows your methods to report errors in a
manner that cannot be ignored. Every exception that is thrown must be caught or the
application terminates. Exceptions are actually class objects derived from the
Throwable class. Therefore, exceptions combine data and methods; an exception
object generally contains a string explaining what the error is.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

323

Object Oriented Programming with C++ and Java

19.6 Short Summary

 A Java exception is an object that describes an exceptional (that is, error)
condition that has occurred in a piece of code.

 Java exception handling is managed via five keywords; try catch, throw, throws,

and finally.

 An exception catch is code that realizes the exception has occurred and deals
with it appropriately.

 Try is the java exception handling term that means a Java program is going to try

to execute a block of code that might generate(throw) an exception.

 All exceptions in Java are sub classed from the class Throwable

19.7 Brain Storm

1. What is an exception?

2. How do we define a try block?

3. How do we define a catch block?

4. Is it essential to catch all type of exceptions?

5. How many catch blocks can be use with one try block?

6. What is the finally block ?When and how it is used?

7. Define an exception call "NoMatchException".That thrown when a string is not

equal to "India".

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 324

IO Stream

Lecture - 20

 IO Stream

Objectives

In this lecture you will learn the following

 Knowing types of streams

 Files

 Filters

 Object Serialization

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

325

Object Oriented Programming with C++ and Java

Lecture - 20

20.1 Snap Shot

20.2 Streams

20.3 Byte Streams & Character Streams

20.4 Files

20.5 Filtered Byte Streams

20.6 Serialization

20.7 Short Summary

20.8 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 326

IO Stream

20.1 Snap Shot -I/O Streams

In fact, aside from print() and println(), none of the I/O methods have been used
significantly. The reason is simple: most real applications of Java are not test-based,
console programs. Rather, they are graphically oriented applets that rely upon Java’s
Abstract window toolkit for interaction with the user. Although test-based programs
are excellent as teaching examples, they do not constitute an important use for Java
in the real world. Also, Java’s support for console I /O is just not very important to
Java programming.

 The preceding paragraph notwithstanding, Java’s does provide strong, flexible
support for I/O as it relates to files and networks. Java’s I/O system is cohesive and
consistent. In fact, once you understand its fundamentals, the rest of the I/O system
is easy to master.

20.2 Streams

 Java programs perform I/O through streams. A stream is an abstraction that either
produces or consumes information. A stream is linked to a physical device by the
Java I/O system. All streams behave in the same manner, even if the actual physical
devices to which they are linked differ. Thus, the same I/O classes and methods can
be applied to any type of device. This means that an input stream can abstract many
different kinds of input: from a disk file, a keyboard, or a network socket. Likewise,
an output stream may refer to the console, a disk file, or a network connection.
Streams are a clean way to deal with input/output without having every part of
your code understand the difference between a keyboard and a network, for
example, . Java implements streams within class hierarchies defined in the java.io
package.

20.3 Byte Streams and Character Streams

 Java 2 defines two types of streams, byte and character. Byte streams provide a
convenient means for handling input and output of bytes. Bytes steams are used, for
example, when reading or writing binary data. Character streams provide a
convenient means for handling input and output of characters. They use Unicode,
and, a therefore, can be internationalized. Also, in some cases, character streams are
more efficient that byte streams.
 The original version of Java (Java 1.0) did not include character streams and,
thus, all I/O was byte oriented. Character streams were added by Java 1.1, and
certain byte-oriented classes and methods were deprecated. That is why older code
that doesn’t use character streams should be updated to take advantage of them,
where appropriate.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

327

Object Oriented Programming with C++ and Java

 One other point at the lowest level, all I/O is till byte oriented. The character –based
streams simply provide a convenient and efficient means for handling character.

 An overview of both byte-oriented streams and character oriented streams is
presented in the following section.

The Byte Stream Classes

 Byte streams are defined by using two class hierarchies. At the top are two abstract
classes. Inputstream and Outputstream. Each of these abstract classes has several
concrete subclasses, that handle the difference between various devices, such as disk
files, network connections, and even memory buffers. The byte stream classes are
shown in Table 12-1 . A few of these classes are discussed later in this section. Others
are described in part 2 . Remember to use the stream classes, you must import
jave.io.

 The abstract classes Inputstream and OutputStream define several key methods that
the other stream classes implement. Two of the most important are read () and write
(), which, respectively, read and write bytes of data. Both method are declared as
abstract inside InoutStream and OutputStream. They are overridden by derived
stream classes.

The Character Stream Classes

 Character stream are defined by using two class hierarchies. At the top are
two abstract classes, Reader and Writer. These abstract classes handle Unicode
character streams. Java has server al concrete subclasses of each of these. The
character stream classes are shown in Table.

 The abstract classes Reader and Writer define several key methods that the
other stream classes implement . Two of the most important methods are read () and
write () which read and write characters of data, respectively. These methods are
overridden by derived stream classes.

Stream Class Meaning

BufferedInputstream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input steam that reads from a byte array

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 328

IO Stream

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods foe

 reading the Java standard data types.

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file.

FileInputStream implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream, Output pipe

PrintStream Output stream that contains print () and println ()

PushbackInputStream Input stream that supports one-byte “unget” which returns a byte to

the input stream.

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or more input Streams that till be read sequentially,
one after the other.

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input steam that reads from a character array

CharArraryWriter output stream that writes to a character array

FileReader Input stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates to bytes characters.

LineNumberReadir Input stream that counts lines.

OutputStreamWriter Output steam that translates character to bytes.

PipedReader Input pipe.

PipedWriter Output pipe.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

329

Object Oriented Programming with C++ and Java

PrintWriter Output stream that contains print () and println()

PushbackReader Input stream that allows characters to be returned to the Input stream.

Reader Abstract class that describes character stream input

StriingReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream

 output.

20.4 Files

Although most of the classes defined by java.io operate on streams, the File class
does not. It deals directly with files and the file system. That is, the File class does
not specify how information is retrieved from or stored in files; it describes the
properties of a file itself. A File objects is used to obtain or manipulate the
information associated with a disk file, such as the permissions, time, date, and
directory path, and to navigate subdirectory hierarchies.
 Files are a primary source and destination for data within many programs. Although
there are severe restrictions on their use within applets for security reasons, files are
still a central resource for storing persistent and shared information. A directory in
Java is treated simply as a File with one additional property – a list of filenames that
a can be examined by the list() method

The following constructors can be used to create File objects

 File(String directory Path)
 File(String directoryPath, String filename)
 File(FiledirObj,String filename)

Here directoryPath is the path name of the file, filename is the name of the file, and
dirObj is a File object that specifies a directory.

The following example creates three files:f1,f2 and f3. The first File object is
constructed with a directory path as the only argument. The second includes two
arguments - the path and the filename. The third includes the file path assigned to f1
and a filename f3 refers to the same file as f2.

 File f1 = new File (“/”);
 File f2 = new File (“/” , “autoexec.bat”);
 File f3 = new File (f1,”autoexc.bat”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 330

IO Stream

 File defines many methods that obtain the standard properties of a File object. For
example, getName () returns the name of the file, getParent () returns the name of
the parent directory, and exists () returns true if the file exists, false if it does not.
The File class, however, is not symmetrical. By this, we mean that there are many
methods that allow you to examine the properties of a simple file object, but no
corresponding function exists to change those attributes. The following example
demonstrates several of the File methods.

 / / Demonstrate File.
 import java.io.File;
 Class FileDemo {
 Static void p (String s) {
 System.out.println (s);
}
 public static void main (String args []) {
 File f1 – new File (“/java/COPYRIGHT”);
 p(“File Name: “ + f1.getName ());
 p(“Path: “+ f1.getPath ());
 p (“Abs Path: “ + f1 getAbsolutePath ());
 p (“Parent: “ + f1.getAbsolutePath ());
 p(f1.exists () ? “exists” : does not exist”);
 p (f1.canWrite () ? “is writeable” : is not writeable”);
 p (f1.canRead () ? “is readable : “is not readable”);
 p (“is” + (f1.isDirectory () ? “ “ : “not” + “a directory”);
 p (f1.isFile () ? “is normal file” : “might be a named pipe”);
 p (f1.isAbsoulte () ? “is absolute” : “is not abosulte”);
 p (“File last modified:” + f1.lastModified ());
 p (“File size: “ + f1 length () + “Bytes”);

When you run this program, you will see something similar to the following:

 File name : COPYRIGHT
 Path :/ java/COPYRIGHT
 Abs path :/java/COPYRIGHT
 Parent: /java
exixts
 is writeable
 is readable
 is not a directory
is normal file

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

331

Object Oriented Programming with C++ and Java

 is absolute
 File last modified : 812465204000
 File size : 695 Bytes

Most of the File methods are self explanatory. isFile () and is Absoulte () are not.
isFile () return true if called on a file and false if called on a directory. Also, isFile ()
returns false for some special files, such as device drivers and named pipes, so this
method can a be used to make sure the file will behave as a file. The isAbsoulte ()
method returns true if the file has an absoulte path and false if its path is relative.
File also includes two useful utility methods. The first is rename To(), shown here:
 boolean renameTo (File newName)

 Here, the filename specified by new Name becomes the name of the invoking File
object. It will return true upon success and false if the file cannot be renamed (if you
either attempt to rename a file so that it move from one directory to another or use an
existing filename, for example).

 The second utility method is delete() which deletes the disk file represented by the
path of the invoking File object. It is shown here:

 boolean delete()

 You can also use delete () to delete a directory if the directory is empty. delete()
returns if it deletes the file and false if the file cannot be removed.

 Java 2 adds some new method to File that you might find helpful in certain
situations. Some of the most interesting are should here:

Method Description

void deleteOnExit () Removes the file associated with the
 invoking object. When the Java Virtual
 Machine terminates

boolean isHidden () Returns true if the invoking file is hidden.
Return false Otherwise.

boolean setLastModified Sets the time stamp on the invoking file
(long Millisec) to that specified by millisec, which is the
 number of milliseconds from January 1,
 1970, Coordinated Universal Time (UTC).

Boolean setReadOnly () Sets the invoking file to read only.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 332

IO Stream

Also, because File now supports the Comparable interface, the methods compareTo(
)is Also supported.

20.5 Filtered Byte Streams

Filtered streams are simply wrappers around underlying input or output streams
that transparently provide some extended level of functionality. These streams are
typically accessed by methods that are expecting a generic streams, which is a
superclass of the translation. The filtered byte streams are FilterInputStream and
FilterOutputStream. Their constructors are shown here:

 FilterOutputStream(OutputStream os)
 FilterInputStream(InputStream is)

The method provided in these classes are identical to those in InputStream and
OutputStream

20.6 Serialization

Serialization is the process of writing the state of an object to a byte stream. This is
useful when you want to save the state of your program to a persistent storage area,
such as a file. At a later time, you may restore these objects by using the process of
deserialization.

Serialization is also needed to implement Remote Method Invocation(RMI).RMI
allows a Java object on one machine to invoke a method of a Java object on a different
machine. An object may be supplied as an argument to that remote method. The
sending machine serializes the object and transmits it. The receiving machine
deserializes it.

Assume that an object to be serialized has references to other object, which in turn,
have references to still more objects. This set of objects and the relationships among
them form a directed graph. There may also be circular references within this object
graph. That is object X may contain a references to themselves. The object
serialization and deserialization facilities have been designed to work correctly in
these scenarios. If you attempt to serialize of an object at the top of an object graph,
all of the other referenced objects are recursively located and serialized. Similarly,
during the process of deserialization all of these objects and their references are
correctly restored.

An overview of the interfaces and classes that support serialization follows.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

333

Object Oriented Programming with C++ and Java

Serializable

Only an object that implements the serializable interface can be saved and restored
by the serialization facilities. The Serialization interface defines no members. It is
simply used to indicate that a class may be serialized. If a class is serializable all of its
subclasses are also serializable.

Variables that are declared as transient are not saved by the serialization facilities.
Also static variables are not saved.

Externalizable

The Java facilities for serialization and deserialization have been designed so that
much of the work to save and restore the state of an object occurs automatically.
However there are cases in which the programmer may need to have control over
these processes. For example, it may be desirable to used compression or encryption
techniques. The Externalizable interface is designed for these situations.

 The Externalizable interface defines these two methods:

void readExteranal (ObjectInput in Stream)
 throws IOException, ClassNotFountExpecption

void writeExternal (ObjectOutput outStream)
 throws IOException

 In these methods, inStream is the byte steam from which the object is to be read, and
outStream is the byte stream to which the object is to be written.

ObjectOutput

 The ObjectOutput interface extends the DataOutput interface and supports object
serialization. It defines the methods shown in Table 17-5. Note especially the
writeObject () method. This is called to serialize an object. All of these methods will
throw an IOException on error conditions

Method Description

void close () Closes the invoking stream. Further write
 attempts will generate an IOException.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 334

IO Stream

void flush () Finalized the output state so that any
 buffers are cleared That is, it flushes the
 output buffers.

void write (byte buffer []) Writes an array of bytes to the invoking
 stream.

void write (byte buffer[], Writes a subrange of numBytes bytes
 int offset, int num Bytes) from the array buffer, beginning at buffer
 [offset].

void write (int b) Writes a single byte to the invoking
 stream. The Byte written is the low-order
 byte of b.

void writeObject (Object obj) Writes object obj to the invoking
 stream.

ObjectOutput Stream

 The ObjectOutputStream calss extends the OutputStream class and implements the
ObjectOutput interface. It is responsible for writing to a stream. The constructor of
this class is

 ObjectOutputStream (OutputStream outStream) throws IOException

 The argument outStream is the output stream to which serialized object will be
written. The most commonly used methods in this class are shown in Table 17-6.
They will throw an IOException on error conditions. Java 2 adds an inner class to
ObjectOutputStream called Putfield. It facilitated the writing of persistent fields and
its use is beyond the scope of this book.

 Method Description

void close() Closes the invoking stream. Further
write attempts will generate an
IOException

void flush() Finalizes the output state so that any

buffers are closed. That is, it flushes the
output buffers.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

335

Object Oriented Programming with C++ and Java

void write(byte buffer[]) Writes an array of bytes to the invoking

stream.

void write(byte buffer[],int offset, Writes a subrange of numBytes
int numbytes) bytes from the array buffer,

 beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking

stream. The byte written is the low-order
byte of b.

void writeBoolean(boolean b) Writes a boolean to the invoking stream.

void writeByte(int b) Writes a byte to the invoking stream.

The byte written is the low-order byte of
b.

void writeBytes(String s) Writes the bytes repersenting str to the

invoking stream.

void writeChar(int c) Writes a char to the invoking stream.

void writeChars(String s) Writes the charcters in str to the

invoking stream.

ObjectInput

 The ObjectInput interface extends the DataInput interface and defines the methods.
It support object serialization. Note especially the readObject() method. This is called
to deserialize an object. All of these methods will throw an IOException on error
conditions.

 Method Description

int avilable() Returns the number of bytes that are

now available in the input buffer.

void close() Closes the invoking stream. Further read

attempts will generate an IOException.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 336

IO Stream

int read() Returns an integer representation of the
next avialable byte of input. –1 is
returned when the end of the file is
encountered.

 long skip(long numBytes) Ignores, numBytes bytes in the invoking

stream, returning the number of bytes
actually ignored.

ObjectInputStream

 The ObjectInputStream class extends the InputStream class and implements the
ObjectInput interface . ObjectInputStream is responsible for reading objects from a
stream. The constructor of this class is ObjectInputStream(InputStream inStream)
throws IOException , StreamCorruptedException.

The argument inStream is the input stream from which serialized objects should be
read. The most commonly used methods in this class are shown in Table. They will
throw an IOException on error conditions. Java 2 adds an inner class to
ObjectInputStream called GetField. It facilitates the reading of persistent fields and
its use is beyond the scope of this book. Also, the method readLine() was deprecated
by Java 2 and should no longer be used.

Method Description

int available() Returns the number of bytes that are now
 available in the input buffer.

void close() Closes the invoking stream. Further read
 attempts will generate an IOException.

int read() Returns an integer representation of the next
 available byte of input. -1 is returned when the end
 of the file is encountered.

Boolean readBoolean() Reads and returns a boolean from the invoking
 stream.

A Serialization Example

The following program illustrates how to use object serialization and deserialization.
It begins by instantiating an object of class MyClass. This object has three instance

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

337

Object Oriented Programming with C++ and Java

variables that are of types String, int, and double. This is the information we want to
save and restore.

A FileOutputStrem is created that refers to a file named “serial” , and an
ObjectOutputStream is created for that file stream. The writeObject() method of
ObjectOutputStream is then used to serialize our object. The object output stream is
flushed and closed.

A FileInputStream is then created that refers to the file named “serial” ,and an
ObjectInputStream is created for that file stream. The readObject() method of
ObjectInputStream is then used to deserialize our object. The object input stream is
then closed.

Note that MyClass is defined to implement the Serializable interface. If this is not
done, a NotSerializableException is thrown. Try experimenting with this program
by declaring some of the MyClass instance variables to be transient. That data is then
not saved during serialization.

Import java.io.*;
public class SerializationDemo{
public static void main(String args[]){|
//Object serialization
try{
MyClass Object1 = new MyClass(“Hello”,-7,2.7e10);
System.out.println(“object1: “ +object1);
FileOutputStream fos = new FileOutputStream(“serial”);
objectOutputSteam oos = new ObjectOutputStream(fos);
oos.writeObject(object1);
oos.flush();
oos.close();
}
catch(Exception e) {
System.out.println(“Exception during serialization:”+e);
System.exit(0);
}
//object deserialization
try{
MyClass object2;
FileInputStream fis = new FileInputStream(“serial”);
ObjectInputStream ois = new ObjectInputStream(fis);
Object 2 = (MyClass)ois.readobject();
ois.close();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 338

IO Stream

System.out.println(“object2:”+object2);
}
catch(Exception e){
System.out.println (“Exception during deserialization:” +e);
System.exit(0);
}
}
}

class MyClass implements Serializabele{
String s;
int I;
double d;
public MyClass(String s, int i,double d){
this.s = s;
this.i = i;
this.d= d;
}
public String toString(){
return “s=” +s “; i =”+ i +”; d=” +d;
}
}
This program demonstrates that the instance variables of object1 and object2 are
identical. The output is shown here:
Object 1: s=Hello; I=-7; d=2.7E10
Object2: s=Hello; I=-7; d=2 .7E10

20.7 Short Summary

 A stream is an abstraction that either produces or consumes information.

 A file objects is used to obtain or manipulate the information associated with a
disk file, such as the permissions, time, date, and directory path, and to
navigate subdirectory hierarchies.

 Serialization is the process of writing the state of an object to a byte stream.

 The Java facilities for serialization and deserialization have been designed so
that much of the work to save and restore the state of an object occurs
automatically.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

339

Object Oriented Programming with C++ and Java

20.8 Brain Storm

1. What is meant by Streams?

2. What are the two types of Streams? Explain Briefly.

3. What is the use of File Class?

4. Explain the process Called Serialization.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 340

Applets & Applications

Lecture - 21

Applets & Applications

Objectives

In this lecture you will learn the following

 Java Applets

 Java Applications

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

341

Object Oriented Programming with C++ and Java

Lecture - 21

21.1 Snap Shot

21.2 Types Of Java Programs

21.3 Java Application Programs

21.4 Java Applets

21.5 Java Application versus Java Applet

21.6 Short Summary

21.7 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 342

Applets & Applications

21.1 Snap Shot

In this lecture you will learn about Java Applets and Java Applications.

21.2 Types of Java programs

Java language is mainly used for internet programming. The purpose of
programming has completely changed because of internet. Formerly, a program was
written to input a few numbers and process them in a very complex way and output
the results. In data processing a program is written to read one or more data files and
produce a report or a ticket, now, these are the days of advertisements. Programs are
written for presentation of certain ideas or company profile, advertisement or
notifications. Using HTML we can create static pages can be created in Java. All
graphical user input interface windows can be designed in Java. Sound, animation
and all Mutlimedia elements dance in the small screen. A small intelligent dynamic
program that can also be used for writing ordinary application programs.

Java Programs

Application programs and Applet Programs

There are two types of Java programs. Application programs and applet programs,
Java applets are used in Internet applications. It may present your company profile,
notification advertisement or anything. The Java applet will be placed on the web by
embedding into a HTML file. Any internet user can click your applet and run your
applet on your web.

21.3 Types of Java programs

Before concluding this chapter let use see how Java programs look like we have
already seen that it looks almost like a C++ program.

• Java is case sensitive. It differentiates between lower and upper case letters. For
example pay, Pay and PAY are considered as three different variable names in
Java.

• Every Java statement must end with a semi colon. In one line we normally write
only one statement and it ends with a semi colon.

• Compound Sentences can be formed with braces{}.
Let us first see a small Java program, which prints the message "Radiant welcomes
you to Java world".
class welcomes
{
public static void main(String a[])

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

343

Object Oriented Programming with C++ and Java

{
System.out.println("welcomes you to java world");
}
}
as we have already mentioned, Java is an object oriented programming language. So,
every program defines a class. Here we have defined a class named welcomes.

21.4 Java Applets

In this section let us see how to create a Java applet. Any Java applet can be
embedded into a HTML file and a dynamic web page can be designed. When we
develop an applet, we must import two important Java groups. They are

Java.awt
Java.applet

Java.awt is called the Java abstract windows tool kit. Java.applet is the applet group.
We must import all the classes in these two groups as follows:
 Import java.awt.*;

Import java.applet.*;
 In the above statements the asterix symbol(*) is used as wild card.

Let us write a small applet to display the message,
Welcomes you to the java world

The names of the class is welcome applet , which is a subclass of applet class the
following is the java code for the applet.

Import java.awt.*;
Import java.applet.*;
public class welcomeapplet extends Applet
{
public void paint(Graphics g)
{
g.drawString(“welcomes you to the java world “ , 20,20);
}
}

Let us see how different this is from out first program class welcomes. The import
statements have already been explained. The statement, public class welcomesapplet
extends Applet declares that welcomesApplet is a new class which is a subclass of
Applet class. This means that welcomesApllet ia an applet. For this class we define a
method called paint which has only one statement. The statement
g.drawString(“welcomes you to the java world”,20,20) tells us that the message
welcomes you to the java world will be printed at the position 20,20 Graphics is a
class which is avialable in java and drawString() is a behaviour of Graphics class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 344

Applets & Applications

When a java applet is ready we must first compile it using the compiler javac. For
our program we complie using the command. Javac welcomes applet .java.

When the compilation is over, the class file is ready and so it can be embedded in an
HTML file.

Before embedded in a HTML. File, we can verify the output the output using a
program called applet viewer. We embed the applet in a HTML page and then open
it with an internet browser. For example we can embed the above applet welcomes
applet in a HTML page as follows.

<html>

<head>

<title>

Embedding an applet in a HTML document

</title>

<body>

<applet code= welcomesapplet.class width=300 height=100>

</applet>

</body>

</html>

when we open this HTML document using Internet explorer we get the

window with welcome message.

21.5 Java Applets and Applications

Java can be used two types of programs: applications and applets. An application is a
program that runs on your computer, under the operating system of that computer.
That is, an application created by java is more or less like one created using C or
C++. When used to create applications, java is not much different from any other
computer language. Rather, it is Java's ability to create applets that makes it
important. An applet is an application designed to be transmitted over the Internet
and executed by a Java-compatible Web browser. An applet is actually a tiny Java
program, dynamically downloaded across the network, just like an image, sound file,
or video clip. The important difference is that an applet is an intelligent program, not
just an animation or media file. In other words, an applet is a program that can react

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

345

Object Oriented Programming with C++ and Java

to user input and dynamically change-not just run the same animation or sound over
and over.

An exiting as applets are, they would be nothing more than wishful thinking if java
were not do address the two fundamental problems associated with them: security
and portability. Before continuing, let's define what these two terms mean relative to
the Internet.

21.6 Short Summary

 Java language is mainly used for internet programming.

 An applet is an application designed to be transmitted over the Internet and

executed by a Java-compatible Web browser.

 Any Java applet can be embedded into a HTML file and a dynamic web page can
be designed.

21.7 Brain Storm

1. What are the two types of Programs?

2. Explain the Java Application Program.

3. Explain the Java Applet Program.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 346

Multithreading & Multitasking

=

Lecture - 22

Multithreading & Multitasking

Objectives

In this lecture you will learn the following

 Multi Threading

 Multi Tasking

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

347

Object Oriented Programming with C++ and Java

Lecture - 22

22.1 Snap Shot

22.2 Using Multi Threading

22.3 Multitasking

22.4 Multitasking Vs Multithreading

22.5 Short Summary

22.6 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 348

Multithreading & Multitasking

22.1 Snap Shot

In this lecture you will learn about the concept of Multi Threading, Multi Tasking
and its differences

22.2 Using Multithreading

If you are like most programmers, having multithreaded support built into the
language will be new to you. The key to utilizing this support effectively is to think
concurrently rather than serially. For example, when you have two subsystems
within a program that can execute concurrently, make them individual threads. With
the careful use for multithreading, you can create very efficient programs. A word of
caution is in order, however, if you create too many threads, you can actually
degrade the performance of your program rather than enhance it. Remember that
some overhead is associated with context switching. If you create too many threads,
more CPU time will be spent changing contexts than executing your program!

Java provides built-in support for multithreaded programming. A multithread
program contains two or more parts that can run concurrently. Each part of such a
program is called a thread, and each thread defines a separate path of execution.
Thus, multithreading is a specialized form of multitasking.

22.3 Multi Tasking

You are almost certainly acquainted with multitasking, because it it’s supported by
virtually all modern operating systems. However, there are two distinct types of
multitasking: process-based and thread-based. It is important to understand the
difference between the two. For most readers, process-based multitasking is the
more familiar form. A process is, in essence, a program that is executing. Thus
process-based multitasking is the feature that allows your computer to run two or
more programs concurrently. For example, process-based multitasking enables you
to run the Java compiler at the same time that you are using a text editor. In process-
based multitasking, a program is the smallest unit of code that can be dispatched by
the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. This means that a single program can perform two or more tasks
simultaneously. For instance, a text editor can format text at the same time that it is
printing, as long as these two actions are being performed by two separate threads.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

349

Object Oriented Programming with C++ and Java

Thus, process-based multitasking deals with the “big picture”, and the thread-based
multitasking handles the details.

Multitasking threads require less overheads than multitasking processes. Processes
are heavy weight tasks that require their own separate address space. Inter-process
communication is expensive and limited. Context switching from one process to
another is also costly. Threads, on the other hand, are lightweight. They share the
same address space and cooperatively share the same heavyweight process. Inter
thread communication is inexpensive, and context switching from one thread to the
next is low cost. While Java programs make use of process-based multitasking
environments, process-based multitasking is not under the control of Java. However,
multithreaded multitasking is.

Multithreading enables you to write very efficient programs that make maximum
use of the CPU, because idle time can be kept to a minimum. This is especially
important for the interactive, networked environment in which Java operates,
because idle time is common. For example, the transmission rate of data over a
network is much slower than the rate at which the computer can process it. Even
local file system resources are read and written at a much slower pace than they can
be processed by the CPU. And, of course, user input is much slower than the
computer. In a traditional, single-threaded environment your program has to wait
for each of these tasks to finish before it can proceed to the next one - even though
the CPU is sitting idle most of the time. Multithreading lets you gain access to this
idle time and put it to good use.

If you have programmed for operating systems such as Windows 98 or Windows
NT, then you are already familiar with multithreaded programming. However, the
fact that Java manages threads makes multithreading especially convenient, because
many of the details are handled for you.

22.4 Multithreading Vs Multitasking

A thread is the smallest unit of execution that the system can schedule to run; a path
of execution through a process. Each thread consists of a stack, an instruction
pointer, the CPU state , and an entry in the system’s scheduler list. A thread may be
blocked , scheduled to execute, or executing.

Threads communicate by sending messages to each other, and they compete for
ownership of various semaphores, which govern the allocation of computing

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 350

Multithreading & Multitasking

resources between the individual threads. The threads ask the system for an
instruction to carry out. If no instruction is ready, the thread is suspended until it has
something to do. If an instruction is ready, the thread performs the task and makes
another request to the system for work.

Older operating systems achieve multitasking by creating multiple processes, which
creates a great deal of overhead. In a multithreaded environment, a process is broken
into independent executable tasks (threads). These threads then collectively perform
all the work that a single program could execute, allowing applications to perform
many tasks simultaneously. The separate threads complete their tasks in the
background and allow continued operation of the primary assignment. The
challenge is to break the application up into discrete tasks that can become threads.

An ice cream parlor is an example of a multithreaded process. As demand increases,
more counter help is added. Each additional person shares the floor space and the
equipment (the ice cream , the cones and dishes , the scoops, the cash register.) In an
environment that is not multithreaded , each additional person would have their
own equipment and floor space. At some point, even though shared resources are
being used, it may make sense to add a whole new environment to service the
additional demand. Hence, a new ice cream parlor opens up one mile away. In IS
terms, a larger server machine is added to the environment.

Tightly coupled processes that execute concurrently require programmers to push
problem abstraction further than they have in the past. A thread of execution is a
new conceptual unit that performs the work in the system by moving from one
instruction or statement (thread) to the next, executing each in turn.

The greatest adjustment to multitasking may be in user’s work habits. Users are
accustomed to taking a break or starting at the screen after issuing a command.
Under multithreading, users need to adjust to the idea that they don’t have to wait
after issuing a command- they can switch to another task.

22.5 Short Summary

 A multithread program contains two or more parts that can run concurrently.

 Processes are heavy weight tasks that require their own separate address space.

 In a multithreaded environment, a process is broken into independent executable
tasks (threads).

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

351

Object Oriented Programming with C++ and Java

22.6 Brain Storm

1. What is Multi Threading?

2. What is Multi Tasking?

3. What is the difference between process-based and thread-based Multi

tasking?

4. What is the difference between Multi Tasking & Multi Threading?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 352

Working with Threads

Lecture - 23

Working with Threads

Objectives

In this lecture you will learn the following

 Knowing Models in Threads

 Creating Thread

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

353

Object Oriented Programming with C++ and Java

Lecture - 23

23.1 Snap Shot

23.2 Thread

23.3 The Java Thread Model

23.4 Creating A Thread

23.5 Extending Thread

23.6 The Thread Class and the Runnable Interface

23.7 Override

23.8 Short Summary

23.9 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 354

Working with Threads

23.1 Snap Shot

In this lecture you will learn about Java Threading Model , Creating a Thread and about
Extending Thread.

23.2 Thread

When a Java program starts up, one thread begins running immediately. This is
usually called the main thread of your program, because it is the one that is executed
when your program begins. The main thread is important for two reasons.

• It is the thread from which other “child” threads will be spawned.

• It must be the last thread to finish execution. When the main thread strops, your
program terminates.

Although the main thread is created automatically when your program is started, it
can be controlled through a Thread object. To do so, you must obtain a reference to
it by calling the method current Thread (), which is a public static member of
Thread. Its general form is shown here:

static Thread currentThread ()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

 Let’s begin by reviewing the following example:

 / / Controlling the main Thread.
 class CurrentThreadDemo {

 public static void main (String args []) {
 Thread t = Thread. currentThread ();

System.out.println (“Current thread :” + t);

 / / change the name of the thread
 t.setName (“My Thread”);
 System.out.println (“After name change:” + t);
 try {
 for (int n = 5; n> 0; n - -) {
 System.out.println (n) ;
 Thread.sleep (1000);
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

355

Object Oriented Programming with C++ and Java

 } catch (InterruptedException,e) {
 System.out.println (“Main thread interrrupted”);
 }
 }
 }

In this program, a reference, to the current thread (the main thread, in this case) is
obtained by calling currentThread (), and this reference is stored in the local variable
t. Next, the program dispalys information about the thread. The program then calls
setName() to change the internal name of the thread. Information about the thread
is then redisplayed. Next, a loop counts down from five, pausing one second
between each line. The pause is accomplished by the sleep() method. The argument
to sleep() specifies the delay period in milliseconds. Notice the try/catch block
around this loop. The sleep () method in Thread might throw an Interrupted
Exception. This would happen if some other thread wanted to interrupt this
sleeping one. This example just prints a message if it gets interrupted. In a real
program, you would need to handle this differently. Here is the output generated by
this program.

 Current thread: Thread [main, 5 main]

 After name change: Thread [My Thread, 5,main]
 5
 4
 3
 2
 1

Notice the output produced when it is used as an argument to println(). This
displays, in order the name of the thread, its priority and the name of its group. By
default, the name of the main thread is main. Its priority is 5, which is the default
value, and main is also the name of the group of threads to which this thread
belongs. A thread group is a data structure that controls the state of a collection of
threads as a whole. This process is managed by the particular run-time environment
and is not discussed in detail here. After the name of the thread is changed, t is again
output. This time, the new name of the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the
program. The sleep() method causes the thread from which it is called to suspend
execution for the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 356

Working with Threads

The number of millisecond to suspend is specified in milliseconds. This methods
may throw an Interrupted Exception.

The sleep() method has a second form, shown next, which allows you to specify the
period in terms of millisecond and nanoseconds.

static void sleep (long millliseconds, int nanoseconds) throws Interrupted Exception.

This second form is useful only in environment that allow timing periods as short as
nanoseconds.

As the preceding program shows, you can set the name of a thread by using
setName (). You can obtain the name of a thread by calling getName() (but note
that this procedure is not shown in the program..) These methods are members of
the Thread class and are declared like this:

final void setName (String threadName)

 final String getName ()
 Here, threadName specifies the name of the thread.

23.3 The Java Thread Model

The Java a run time system depends on threads for many things, and all the class
libraries are designed with multithreading in mind. In fact, Java uses threads to
enable the entire environment to be asynchronous. This helps reduce inefficiency by
preventing the waste of CPU cycles.

The value of a multithreaded environment is best understood in constrict to its
counterpart. Single threaded systems used an approach called an event loop with
polling. In this models a single thread of control run in an infinite loop, polling a
single event queue to decide what to do next. Once this polling mechanism returns
with, say a signal that a network file is ready to be read, then the event loop
dispatches control to the appropriate event handler. Until this event handler returns,
nothing else can happen in the system . This wastes CPU time. It can also result in
one part of a program general, in a singled threaded environment, when a thread
blocks (that is, suspends execution) because it is waiting for some resource, the
entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is
eliminated. One thread can pause without stopping other parts of your program. For
example , the idle time created when a thread reads data from a network or waits for

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

357

Object Oriented Programming with C++ and Java

user input can be utilized elsewhere. Multithreading allows animation loops to sleep
for a second between each frame without causing the whole system to pause. When a
thread blocks in a Java program, only the single thread that is blocked pauses. All
other threads continue to run.

23.4 Creating a Thread

In the most general sense, you create a thread by instantiating an object of type
Thread. Java defines two ways in which this can be accomplished:

• You can implement the Runnable interface.
• You can extend the Thread class, itself.

The following two sections look at each method, in turn.

 Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread
on any object that implements Runnable. To implement Runnable, a class need only
implement a single method called run () , which is declared like this:

 public void run ()

Inside run() you will define the code that constitutes the new thread . It is important
to understand that run() can call other methods, use other classes , and declare
variables, just like the main thread can. The only difference is that run() establishes
the entry point for another, concurrent thread of execution within your program.
This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiated an object of
type Thread from within that class. Thread defines several constructors. The one that
we will use is shown here:
 Thread (RunnableOb,String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the
new thread is specified by threadName.

After the new thread is created, it will not start running until you call its start ()
method, which is declared within Thread. In essence, start. () .executes a call to run
()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 358

Working with Threads

 The start() method is shown here:

 void start ()
 Here is an example that creates a new thread and starts it running.

 / / Create a second thread.
 class NewThread implements Runnable {
 Thread t ;
 NewThread () {
 / / Create a new, second thread
 t = new Thread (this, “Demo Thread”);
 System.out.println (“Child thread:” + t);
 t. start (); / / Start the thread
}
 / / This is the entry point for the second thread.
 public void run () {
 try {
 for (int i= 5; i> 0; i - -) {
 System.out.println (“Child Thread:” + i);
 Thread.sleep (500) ;
 }
 } catch (InterruptedException e) {
 System.out.println (“Chiled intrrupted”.);
}
 System.out.println (“Exiting child thread.”);
 }
}

class ThreadDemo {
public static void main(String args []) {
 new NewThread (); / / create a new thread

 try {
 for(int i= 5 ; i> 0;i - -) {
 system.out.println(“Main Thread:” + i);
 Thread.sleep (1000);
 }
}catch (InterrruptedExpection e) {
 System.out.println (“Main thread interrupted.”);
 }

System.out.println (“Main thread exiting.”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

359

Object Oriented Programming with C++ and Java

 }
}
Inside NewThread’s Constructor, a new Thread object is created by the following
statement.

t= new thread (this, “Demo Thread”);

Passing this as the first argument indicates that you want the new thread to call the
run () method on this object. Next, start () is called, which starts the thread of
execution beginning at the run() method. This causes the child thread’s for loop to
being . After calling start (), NewThread’s constructor returns to main(). When the
main thread resumes, it enters its for loop. Both threads continue running sharing
the CPU until their loops finish. The output produces by this program is as follows:

 Child thread: thread[demo thread ,5 ,main]
 Main Thread: 5
 Child Thread : 5
 Child Thread : 4
 Main Thread : 4
 Child Thread : 3
 Child Thread : 2
 Main thread : 3
 Child Thread : 1
 Exiting child thread.
 Main thread: 2
 Main Thread :1
 Main thread exiting.

As mentioned earlier, in a multithreaded program, the main thread must be the last
thread to finish running . If the main thread finished before a child thread has
completed, then the Java run-time system may “hang”. The preceding program
ensures that the main thread finished last because the main thread sleeps for 1,000
milliseconds between iteration’s but the child thread sleeps for only 500 millisecond.
This causes the child thread to terminate earlier than the main thread. Shortly, you
will see a better way to ensure that the main thread finishes last.

23.5 Extending Thread

The second way to create a thread is to create a new class that extends Thread, and
then to create an instance of that class. That extending class must override the run ()
method, which is the entry point for the new thread. It must also call start () to

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 360

Working with Threads

begin execution of the new thread. Here is the preceding program rewritten to
extend Thread.
1. Create a second thread by extending thread
2. Class NewThread extends Thread {
3. NewThread(){
 / / Create a new, second thread
 super (“Demo Thread”);
 System.out.println (“Child thread:” + this);
 start (); / / start the thread

 }

 / / This is the entry point for the second thread.
 public void run () {
 try {
 for (int i=5; i > 0; i - -) {
 System.out.println (“Child Thread:” + i);
 Thread.sleep (500);
 }
 }catch (InterrruptedException e) {
 System.out.println (“Child interrupted.”);
 }
 System.out.println (“Exiting child thread,”);
 }
}

class extendThread {
 public static void main (String args []) {
 new NewThread (); / / create a new thread

 try {
 for (int i =5; i> 0; i - -){
 System.out.println (“Main Thread:” + i);
 Thread.sleep (1000);
 }
 }catch (InterruptedException e) {
 System.out.println (“Main thread interrupted.”);
 }
System.out.println (“Main thread exiting .”);
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

361

Object Oriented Programming with C++ and Java

This program generates the same output as the preceding version. As you can see,
the child thread is created by instantiating an object of NewThread, which is derived
from Thread.

Notice the call to super () inside NewThread. This invokes the following form of the
Thread constructor:
 public Thread (String threadName)

Here, threadName specifies the name of the thread.

23.6 The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods and its
companion interfaces, Runnable, Thread encapsulated a thread of execution. Since
you can’t directly refer to the ethereal state of a running thread, you will deal with it
through its proxy, the Thread instance that spawned it. To create a new thread, your
program will either extend Thread implement the Runnable interface.

 Method Meaning

 getName Obtain a thread’s name
 getPriority Obtain a thread’s priority.
 isAlive Determine if a thread is still
 running.
 join Wait for a thread to terminate
 run Entry point for the thread
 sleep Suspend a thread for a period of
 time
 start Start a thread by calling its run
 method.

Thus far, all the examples in this book have used a single thread of execution. The
remainder of this chapter explains how to use Thread and Runnable to create and
manage threads, beginning with the one thread that all Java programs have: the main
thread.

23.7 Override

In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass , then the method in the subclass, subclass is
said to override the method in the superclass. When an overridden method is called

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 362

Working with Threads

from within a subclass, it will always refer to the version of that method defined by
the superclass will be hidden consider the following:
// method overriding
class A
 {
int i,j;
A(int a, int b) {
I=a;
J=b;
}
//display i and j
void show() {
System.out.println(“i and j: “ +i “ “ + j);
}
}
class B extends A{
 int k;
B(int a, int b, int c) {
super(a,b);
k=c;
}
// display k – this overrides show() in a
void show() {
System.out.println(“k: “+k);
}
}
class override {
public static void main(String a[]) {
B subOb = new b(1,2,3);
SubOb.show();
}
}
The output of this program is
K: 3

23.8 Short Summary

 The sleep () method causes the thread from which it is called to suspend

execution for the specified period of milliseconds.

 The easiest way to create a thread is to create a class that implements the
Runnable interface.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

363

Object Oriented Programming with C++ and Java

 In a class hierarchy, when a method in a subclass has the same name and type

signature as a method in its superclass , then the method in the subclass, subclass
is said to override the method in the superclass.

23.9 Brain Storm

1. What is threading?

2. What are the methods we used for creating thread?

3. Explain about Java Thread Model?

4. What is Override?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 364

Threads States & Priorities

Lecture - 24

Thread States & Priorities

Objectives

In this lecture you will learn the following

 Thread States

 Thread Priorities

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

365

Object Oriented Programming with C++ and Java

Lecture - 24

24.1 Snap Shot

24.2 Threads States

24.3 Thread Priorities

24.4 Short Summary

24.5 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 366

Threads States & Priorities

24.1 Snap Shot

In this lecture you will learn about Thread States, Thread Priorities and about Rules
of Context Switch.

24.2 Threads States

Sometimes, suspending execution of a thread is useful. For example, separate thread
can be used to display the time of day. If the user doesn’t want a clock, then its
thread can be suspended. Whatever the case, suspending a thread is a simple matter.
Once suspended, restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads difference between Java 2 and
earlier versions. Although you should use the Java2 approach for all new code, you
still need to understand how these operations were accomplished for earlier Java
environment. For example you may need to update or maintain older, legacy code.
You also need to understand why a change was made for Java2. For these reasons,
the next section describes the original way that the execution of a thread was
controlled, followed by a section that describes the new approach required for Java2.

Prior to Java 2, a program used suspend () and resume (), which are methods
defined by Thread, to pause and restart the execution of a thread. They have the
form shown below:

 final void suspend ()

 final void resume ()

The following program demonstrates these methods.

 / / Using suspend () and resume ().

 class NewThread implements Runnable {

 Straing name; / / name of thread

 Thread t;

 NewThread(String threadname) {

 name = threadname;

 t = new Thread (this , name);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

367

Object Oriented Programming with C++ and Java

 System.out.println (“New thread:” + t);

 t.start (); / / Start the thread

}

 / / This is the entry point for thread

 public void run () {

 try {

 for (int i = 15; i>0; i - -) {

 System .out.println(name + “:” + i);

 Thread.sleep (200);

}

 } catch (InterruptedException e) {

 System.out.println (name + “interrupted.”);

 }

 System.out.println (name + “exiting.”);

 }

}

class SuspendResume {

 public static void main (String args []) {

NewThread ob1= new NewThread (“One”);

NewThread ob2 = new NewThread (“Two”);

try {

 Thread.sleep (1000);

 obl.t.suspend ();

 System.out.println (“Suspending thread One”);

Thread.sleep (1000);

obl.t.resume ();

System.out.println(“Resuming thread one”);

ob2.t.suspend();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 368

Threads States & Priorities

System.out.println(“Suspending thread Two”);

Thread.sleep (1000);

ob2.t.resume () ;

System.out.println (“Resuming thread Tow);

}catch (InterruptedException e) {

System.out.println(“Main thread Interrupted”);

}

/ / wait for thread to finish

try {

 System.out.println (“Waiting for threads to finish.”);

 ob1.t.join ();

 ob2.t.join();

 } catch (InterruptedException e) {

 System.out.println (“Main thread Interrupted”);

 }

 System.out.println (“Main thread exiting.”);

 }

}

Sample output from this program is shown here:

 New thread: Thread [One,5,main]

 One: 15

 New thread: Thread[Tow,5 main]

 Two: 15

 One : 14

 Two : 14

 One : 13

 Two: 13

 One : 12

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

369

Object Oriented Programming with C++ and Java

 Two : 12

 One : 11

 Two : 11

Suspending thread One

 Two: 10

 Two : 9

 Two : 8

 Two : 7

 Two : 6

Resuming thread One

Suspending thread Two

 One : 10

 One : 9

 One : 8

 One : 7

 One : 6

Resuming thread Two

Waiting for threads to finish

 Two : 5

 One: 5

 Two : 4

 One: 4

 Two : 3

 One : 3

 Two : 2

 Two : 2
 Two : 1

 One: 1

Two exiting.

One exiting.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 370

Threads States & Priorities

Main thread exiting.

The Thread class also defines a method called stop() that stops a thread . Its
signature is shown here:

 void stop ()

Once a thread has been stopped, it cannot be restarted using resume ().

Suspending resuming and stopping threads using java 2

While the suspend (), resume (), and stop() methods defined by Thread seem to be
a perfectly reasonable and convenient approach to managing the execution of
threads, they must not be used for new Java programs. Here’s why. The suspend()
method of the Thread class is deprecated in Java 2. This was done because suspend(
) can sometimes cause serious system failures. Assume that a thread has obtained
locks on critical data structures. If that thread us suspended at that point, those locks
are not relinquished. Other threads that may bewailing for those resources can be
deadlocked.

The resume() methods is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() methods of the Thread class, too, is deprecated in Java 2 This was done
because this methods can sometimes cause serious system failures. Assume that a
thread is writing to a critically important data structure and has completed only part
of its changes. If thread is stopped at that point, that data structure might be left in a
corrupted state.

Because you can’t use the suspend() resume(), or stop() methods in Java 2 to
control a thread, you might be thinking that no way exists to pause, restart, or
terminate a thread. But, fortunately, this is not true. Instead, a threads must be
designed so that the run() method periodically checks to determine whether that
thread should suspend, resume, or stop its own execution. Typically, this is
accomplished by establishing a flag variable that indicates the execution state of the
thread. As long as this flag is set to “running”, the run() method must continue to
let the thread execute. If this variable is set to “suspend”, the thread must pause. If
it is set to “stop”, the thread must terminate. Of course, a variety, of ways exist in
which to write such code, but the central theme will be the same for all programs.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

371

Object Oriented Programming with C++ and Java

The following example illustrates how the wait () and notify() methods that are
inherited from Object can be used to control the execution of a thread, This example
is similar to the program in the previous section. However, the deprecated methods
calls have been removed. Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named supendFlag,
which is used to control the execution of the thread. It is initialized to false by the
constuctor. The run() method contains a synchronized statement block that checks
suspendFlag. IF that variable is true, the wait () method is invoked to suspend the
execution of the thread. The mysuspend () method sets suspendFlag to true. The
myresume () method set suspendFlag to false and invokes notify () to wake up the
thread. Finally, the main () method has been modified to invoke the my suspend()
and ,myresume () methods.

// Suspending and resuming a thread for java 2

class NewThread implements Runnable

{

String n;

Thread t;

boolean s;

NewThread(String tn) {

n= threadname;

t=new Thread(this, n);

System.out.println(“New thread: “ +t);

s=false;

t.start();

}

//This is the entry point for thread.

public void run() {

try{

for(int i= 15; i> 0; i--){

System.out.println(name “ “;”+i);

Thread.sleep(200);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 372

Threads States & Priorities

synchronized(this){

while(s) {

wait();

}

}

}

}catch(InterruptedException e)

System.out.println(name+” interrupted.”);

}

System.out.println(name+” exiting.”);

}

void mysuspend(){

s=true;

}

synchornized void myresume() {

s=false;

notify();

}

}

class SuspendResume {

public static void main(String a[])

 NewThread o1 = new NewThread(“one”);

 NewThread o2 = new NewThread(“Two”);

try {

Thread.sleep(1000);

o1.mysuspend();

System.out.println(“Suspending thread One”);

Thread.sleep(1000);

o1.myresume();

System.out.println(“Resuming thread One”);

o2.mysuspend();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

373

Object Oriented Programming with C++ and Java

System.out.println(“Suspending thread Two”);

Thread.sleep(1000);

o2.myresume();

System.out.println(“Resuming thread Two”);

} catch(InterruptedException e) {

System.out.println(“Main thread Interrupted”);

}

// wait fot thread to finish

try {

System.out.println(“waiting for threads to finish”);

o1.t.join();

o2.t.join();

}catch(InterruptedException e) {

System.out.println(“Main thread interrupted”);

}

System.out.println(“Main thread Exiting”);

}

}

Although this mechanism isn’t as “clean” as the previous way, nevertheless, it is the
way required to ensure that run-time errors don’t occur. It is the approach that must
be used for all new code.

24.3 Thread Priorities

Java assigns to each thread a priority that determines how that thread should be
treated with respect to the others. Thread priorities are integers that specified the
relative priority of one thread to another. As an absolute value, a priority is
meaningless; a higher-priority thread doesn’t run any faster than a lower-priority
thread if it is the only thread running. Instead, a thread’s priority is used to decide
when to switch from one running thread to the next. This is called a context switch.
The rules that determine when a content switch takes place are simple:

The Thread scheduler to decide when each thread should be allowed to run uses
thread priorities. In theory, higher priority threads get more CPU time than lower
priority threads. In practice, the mount of CPU time that a thread gets often depends

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 374

Threads States & Priorities

on several factors besides its priority. (For example, how an operating system
implements multitasking can affect the relative availability of CPU time.) A higher-
priority thread can also preempt a lower priority one. For instance, when a lower
priority thread is running and a higher priority thread resumes (from sleeping or
waiting on I/O, for example,) it will preempt the lower priority thread.

In theory, threads of equal priority should get equal; access to the CPU. But you
need to be careful. Remember, Java is designed to work in a wide range of
environments. Some of those environments implements multitasking fundamentally
differently than others. For safety, threads that share the same priority should yield
control once in a while. This ensures that all threads have a chance to run under a
non preemptive operating system. In practice, even in non preemptive
environments, blocking situation, such as waiting for I/O . When this happens, the
booked thread is suspended and other threads can run. But, if you want smooth
multithreaded execution, you are better off not relying on this. Also, some types of
tasks are CPU intensive . Such threads, dominate the CPU. For these types of threads,
you want to yield control occasionally, so that other threads can run.

To set a thread’s priority, use the setPriority () methods, which is a member of
Thread. This is its general form.

 final void setPriority (int level)

Here ,level specifies the new priority setting for the calling thread. The value of level
must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10 respectively. To return a thread to default priority, specify
NORM_PRIORTY, which is currently 5. These priorities are defined as final variables
within Thread.

You can obtain the current priority setting by calling the getPriority () method of
Thread, shown here:

 final int getPriority ()

Implementations of Java may have radically different behavior when it comes to
scheduling . The Windows 95/98/NT version works, more or less, as you would
expect. However other versions may work quite differently. Most of the
inconsistencies arias when you have threads that are relying on preemptive behavior,

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

375

Object Oriented Programming with C++ and Java

instead of cooperatively giving up CPU time. The safest way to obtain predictable,
cross platform behavior with Java is to use threads that voluntarily give up control of
the CPU.

The following example demonstrates two threads at different priorities, which do not
run on a preemptive platform in the same way as they run on a nonpreemptive
platform. One thread is set two levels above the normal priority, as defined by
Thread. NORM_PRIORITY, and the other is set to two levels below. The threads
are started and allowed to run for ten seconds. Each thread executes a loop, counting
the number of interruptions. After ten seconds, the main thread stops both threads.
The number of times that each thread made it through the loop is then displayed.

//Demonstrate thread priorities.

class clicker implements runnable {

int c=0;

thread t;

private volatitle boolean running=true;

public clicker(int p) {

t=new thread(this);

t.setPriority(p);

}

public void run()

{

while(running) {

c++;

}

}

public void stop()

running=false;

public void start()

{ t.start();

}

}

class HiLoPri {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 376

Threads States & Priorities

public static void main(String a[]) {

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

clicker h = new clicker(Thread.NORM_PRIORITY+ 2);

clicker l = new clicker(Thread.NORM_PRIORITY-2);

l.start();

h.strat();

try {

Thread.sleep(10000);

}

catch(InterruptedException e) {

System.out.println(“Main thread interrupted.”);

}

l.stop();

h.stop();

// wait for child threads to terminate.

try {

h.t.join();

l.t.join();

}catch(InterruptedException e)

{

System.out.println(“InterruptedException caught.”);

}

System.out.println(“Low-priority thread “ + l.c);

System.out.println(“high-priority thread “ + h.c);

}

}

The output of this program, shown as follows when run under windows 98, indicates
that the threads did context switch , even though neither voluntarily yielded the CPU
nor blocked for I/O. The higher-priority thread got approximately 90 percent of the
CPU time.

Low-priority threads: 4408112

High-priority thread: 589626904

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

377

Object Oriented Programming with C++ and Java

Of course, the exact output produced by this program depends on the speed of your
CPU and the number of other tasks running in the system. When this same program
is run under a nonpreemtive system, different results will be obtained, one other
note about the preceding program. Notice that running is preceded by the keyword
volatile. although volatile is examined more carefully , it is used here to ensure that
the value of running is examined each time the following loop iterates:

while(running) {

c++;

}

without the use of volatile, Java is free to optimize the loop in such way that the
value of running is held in a register of the CPU and not necessarily reexamined with
each iteration. The use of volatile prevents this optimization, telling Java that
running may change in ways not directly apparent in the immediate code.

24.5 Short Summary

 The mechanisms to suspend, stop, and resume threads difference between Java 2
and Java 1.

 The Thread class also defines a method called stop() that stops a thread .

 The resume() methods is also deprecated. It does not cause problems but cannot
be used without the suspend () method as its counterpart.

 The stop() methods of the Thread class, too, is deprecated in Java 2 This was
done because this methods can sometimes cause serious system failures.

 The thread scheduler to decide when each thread should be allowed to run uses
thread priorities.

24.6 Brain Storm

1. What is suspend() method?

2. What is the main difference between suspend() and stop() methods?

3. What is resume() method?

4. What is called thread priority?

5. Why we use Thread Priority?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 378

Synchronization

Lecture - 25

Synchronization

Objectives

In this lecture you will learn the following

 Synchronization

 Inter-thread Communication

 Deadlock

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

379

Object Oriented Programming with C++ and Java

Lecture - 25

25.1 Snap Shot

25.2 Synchronization

25.3 Using Synchronized Method

25.4 The Synchronized Statement

25.5 Inter thread Communication

25.6 Dead Lock

25.7 Short Summary

25.8 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 380

Synchronization

25.1 Snap Shot

In this lecture you will learn about Synchronization , Using the Synchronized
Method , Statement , Inter thread Communication and about Dead Lock.

25.2 Synchronization

When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by
which this is achieved is called synchronization. As you will see, Java proceeds
unique, language-level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore.) A
monitor is an object that is used as a mutually exclusive lock, or mute. Only one
thread can own monitor at a given time. When a thread acquires a lock, it is said to
have entered the monitor. All other threads attempting to enter the locked monitor
will be suspended until the first thread exits the monitor. These other threads are
said to be waiting for the monitor. A thread that owns a monitor can reenter the
same monitor if it so desires.

If you have worked with synchronization when using other languages, such a C or C
++ , you know that it can be a bit tricky to use. This is because most languages do
not, themselves, support synchronization. Instead, to synchronize threads, your
programs need to utilize operating system primitives. Fortunately, because Java
implements synchronization through language elements, most of the complexity
associated with synchronization has been eliminated.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

25.3 Using Synchronized Methods

Synchronization is easy in Java because all objects have their own implicit monitor
associated with them. To enter an object’s monitor, just call a method that has been
modified with the synchronized keyword. While a thread is inside a synchronized
method, all other threads that try to call it (or any other synchronized method) on
the same instance have to wait. To exit the monitor and relinquish control of the
object to the next waiting thread, the owner of the monitor simply returns from the
synchronized method.

To understand the need for synchronization, let’s begin with a simple example that
does not use it but should. The following program has three simple classes. The first
one, Callme, has a single method named call () . The call () method takes a String

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

381

Object Oriented Programming with C++ and Java

parameter called msg. This method tries to print the msg string inside of square
brackets. The interesting thing to notice is that after call () prints the opening
bracket and the msg string, it calls Thread.Sleep (1000),which pauses the current
thread for one.

The constructor of the next class, Caller, takes a reference to an instance of the
Callme class and a String, which are stored in target and msg, respectively. The
constructor also creates a new thread that will call this objects run () method. The
thread is started immediately. The run () method of Caller calls the Call () methods
on the target instance of Callme , passing in the msg string . Finally, the Synch class
starts by creating a single instance of Callme, and three instances of Caller, each with
a unique message string . The same instance of Callme is passed to each Caller.

// This program is not synchronized.
class Callme {
void call(String m) {
System.out.println(“[“+m);
try {
Thread.sleep(1000);
}catch(InterruptedException e){
System.out.println(“Interrupted”);
}
System.out.println(“]”);
}
}
class Caller implements Runnable {
String msg;
Callme target;
Thread t;
public Caller(Callme t1, String s) {
tt=t1;
t=new Thread(this);
t.start();
}
public void run() {
tt.call(m);
}
}
class Synch {
public static void main(String a[]) {
Callme tt = new Callme();
Caller o1 = new Caller(tt,”hello”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 382

Synchronization

Caller o2 = new Caller(tt,”Synchronized”);
Caller o3 = new Caller(tt, “World”);
// Wait for threads to end
try {
o1.t.join();
o2.t.join();
o3.t.join();
}catch(InterruptedException e) {
System.out.println(“Interrrupted”);
}
}
}
Here is the output produced by this program:
Hello[Synchronized[World]]
]
]

As you can see, by calling sleep(),the call() method allows exception to switch to
another thread. This results in the mixed-up output of the three message strings. In
this program, nothing exists to stop all three threads from calling the same method,
on the same object, at the same time. This is known as a race condition, because the
three threads are racing each other to complete the method. This example used
sleep() to make the effects repeatable and obvious. In most situations, a race
condition is more subtle and less predictable, because you can’t be sure when the
context switch will occur. This can cause a program to run right one time and wrong
the next.

To fix the preceding program, you must serialize access to call(). That is , you must
restrict its access to only one thread at a time. To do this, you simply need to precede
call()’s definition with the keyword synchronized as shown here:
 class Callme {
 synchronized void call (String msg){
…

This prevents other threads from entering call () while another thread is using it.
After synchronized has been added to call(), the output of the program is as follows:

 [Hello]
 [Synchronized]
 [World]

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

383

Object Oriented Programming with C++ and Java

Any time that you have a method, or group of methods, that manipulates the
internal state of an object in a multithreaded situation, you should use the
synchronized keyword to guard the state from race conditions. Remember once a
thread enters any synchronized method on an instance, no other thread can enter any
other synchronized methods on the same instance. However, nonsynchronized
methods on that instance will continue to be callable.

25.4 The Synchronized Statement

While creating synchronized methods within classes that you create is an easy an
effective means of achieving synchronization, it will not work in all cases. To
understand why, consider the following. Imagine that you want to synchronize
access to objects of a class that was not designed for multithreaded access. That is,
the class does not use synchronized methods. Further, this class was not created by
you but by a third party, and you do not have access to the source code. Thus, you
can’t add synchronized to the appropriate methods within the class. How can access
to an object of this class be synchronized? Fortunately, the solution to this program is
quite easy. You simply put calls to the methods defined by this class inside a
synchronized block.

This is the general form of the synchronized statement.

 synchronized (object) {
/ / statements to be synchronized
}

Here object is a reference to the object being synchronized. If you want to
synchronize only a single statement, then the curly braces are not needed. A
synchronized block ensures that a call to a method that is a member of object occurs
only after the current thread has successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method.

// This program uses a synchronized block.
Class Callme{
void call (string msg){
System.out.print(“[“+msg);
try{
Thread.sleep(1000);
}catch (InterruptedException e){
System.out.println(“Interrupted”);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 384

Synchronization

system.out.println(“]”);
}
}

class Caller implements Runnable{
String msg;
Callme target;
Thread t;
Public Caller(Callme targ , String s)
Target = targ;
msg = s;
t = new Thread (this);
t.start();
}
//synchronize calls to call()
public void run(){
synchronized(target){
//synchronized block
target.call(msg);
}
}
}
class Synch1{
public static void main(String args[]){
Callme target = new Callme();
Caller ob1 = new Caller(target,”hello”);
Caller ob2 = new Caller (target, “Synchronized”);
Caller ob3 = new Caller (targer,”World”);
//wait for threads to end
try{
ob1.t.join();
ob2.t.join();
ob3.t.join();
}
catch(InterruptedException e){
System .out.println(“Interrupted”);
}
}
}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

385

Object Oriented Programming with C++ and Java

as the preceding example, because each thread waits for the prior one to finish before
proceeding.

25.5 Inter thread Communication

The preceding examples unconditionally blocked other threads from asynchronous
access to certain methods. This use of the implicit monitors in Java objects is
powerful, but you can achieve a more subtle level of control through inter process
communication. As you will see this is especially easy in Java.

As discuses earlier , multithreading replaces event loop programming by dividing
your tasks into discrete and logical units. Threads also provide a secondary benefit.
They do away with polling. Polling is usually implemented by a loop that is used to
check some condition repeatedly. Once the condition is true, appropriate action is
taken. This wastes CPU time . For example, consider the classic queuing problem,.
Where one thread is producing some data and another is consuming it. To make the
problem more interesting, suppose that the producer has to wait until the consumer
is finished before it generates more data. In a polling system, the consumer would
waste many CPU cycles while it waited for the producer to produce . Once the
producer was finished, it would start polling wasting more CPU cycles waiting for
the consumer to finish, and so on. Clearly this situation is undesirable.

To avoid poling, Java includes an elegant inter process communication mechanism
via the wait(), notify() and notify All() methods. These methods are implemented
as final methods in Object, so all classes have them. All three methods can be called
only from within a synchronized method. Although conceptually advanced from a
computer science perspective, the rules for using these methods are actually quite
simple:

• wait() tells the calling thread to give up the monitor and go to sleep until some

other thread enters the same monitor and calls notify()

• notify() wakes up the first thread that called wait() on the same object

• notifyAll() wakes up all the threads that called wait() on the same object. The

highest priority thread will run first

These methods are declared within Object, as shown here

 final void wait() throws InterruptedException
 final void notify()
 final void notifyAll()

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 386

Synchronization

Additional forms of wait() exist that allows you to specify a period of time to wait.

The following sample program incorrectly implements a simple form of the
producer/customer problem. It consists of four classes: Q, the queue that you’re
trying to synchronize; Producer, the threaded object that is producing queue entries;
Consumer, the threaded object that is consuming queue entries; and PC the tiny class
that creates the single Q, Procedure and Consumer.

// An incorrect implemention of a producer and consumer
class Q {
 int n;
 synchronized int get() {
 System.out.println(“Got: “ +n);
 return n;
 }

 synchronized void put(int n){
 this.n = n;
 System.out.println(“Put: “ + n);
 }
}

class Producer implements Runnable {
 Q q;

Producer (Q,q) {
 this.q= q;
 new Thread(thos,”Producer”).start() ;
 }

 public void run() {
 int i = 0;

 while(true) {
 q.put(i++);
 }
 }
}

class Consumer implement Runnable {
 Q,q;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

387

Object Oriented Programming with C++ and Java

 Consumer(Q,q) {
 this.q= q;
 new Thread(this,”Consumer”).start() ;
 }

 public void run() {
 while(true) {
 q.get();
 }
 }
}

class PC {
 public static void main(String args[]) {
 Q,q = new Q();
 new Producer(q);
 new Consumer(q);

 System.out.println(“Press Control-c to stop.”);
 }
}

Although the put() and get() methods on Q are synchronized, nothing stops the
producer from overrunning the consumer, nor will anything stop the consumer from
consuming the same queue value twice. Thus you get the erroneous output shown
here:

 Put :1
 Got :1
 Got :1
 Got :1
 Got :1
 Got :1
 Put :2
 Put :3
 Put :4
 Put :5
 Put :6
 Put :7
 Got :7

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 388

Synchronization

As you can see, after the producer put 1, the consumer started and got the same 1
five times in a row. Then the procedure resumed and produced 2 through 7 without
letting the consumer have a chance to consume them.
The proper way to write this program in Java is to use wait() and notify() to signal
in both directions as shown here:

//A correct implemetation of a procedure and consumer
class Q {
 int n;
 boolean valueSet = false;

synchronized int get() {
 if(!valueSet)
 try {
 wait();

 } catch(InterruptedException e) {
 System.out.println(“InterruptedException caught”);
 }

 System.out.println(“Got: “+n);
 valueSet = false;
 notify() ;

return n;
 }

 synchronized void put(int n){
 if(!valueSet)
 try {
 wait();

 } catch(InterruptedException e) {
 System.out.println(“InterruptedException caught”);
 }

 this.n = n;
 valueSet = true;
 System.out.println(“Put: “+n);
 notify() ;
 }
}
class Producer implements Runnable {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

389

Object Oriented Programming with C++ and Java

 Q q;
Producer (Q,q) {

 this.q= q;
 new Thread(this,”Producer”).start() ;
 }

 public void run() {
 int i = 0;

 while(true) {
 q.put(i++);
 }
 }
}
class Consumer implement Runnable {
 Q,q;

 Consumer(Q,q) {
 this.q= q;
 new Thread(this,”Consumer”).start() ;
 }
 public void run() {
 while(true) {
 q.get();
 }
 }
}

class PCFixed {
 public static void main(String args[]) {
 Q,q = new Q();
 new Producer(q);
 new Consumer(q);
 System.out.println(“Press Control-c to stop.”);
 }
}
Inside get(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside get()
resumes. After the data has been obtained, get() calls notify(). This tells Product that
it is okay to put more data in the queue. Inside put(), wait() suspends execution
until the Consumer has removed the item form the queue. When execution resumes,

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 390

Synchronization

the next item of data is put in the queue, and notify() is called. This tells the
Consumer that it should now remove it.

Here is some output from this program, which shows the clean synchronous
behavior.

 put : 1
 Got : 1
 put : 2
 Got : 2
 put : 3
 Got : 3
 put: 4
 Got :4
 put: 5
 Got: 5

25.6 Deadlock

A special type of error that you need to avoid that relates specifically to multitasking
is deadlock, which occurs when two threads have a circular dependency on a pair of
synchronized objects. For example, suppose one thread enters the monitor on object
X and another thread enters the monitor on object as T. If the thread in tries to call
any synchronized methods on Y, it will block as expected. However, if the thread in
Y in turn tries to call any synchronized method on X, the thread waits forever,
because to access X. it would have to release its own lock on Y so that the first thread
could complete. Deadlock is a difficult error to debug for two reasons:

• In general, it occurs only rarely when the two threads time-slice in just the right
way.

• It may involve more than two threads and synchronized objects. (That is,
deadlock can occur through a more convoluted sequence of events than just
described.)

To understand deadlock fully, it is useful to see it in action. The next example creates
two classes, A and B, with methods foo() and bar () respectively, which pause
briefly before trying to call a method in the other class. The main class, named
Deadlock, creates an A and a B instance, and then starts a second thread to set up the
deadlock condition. The foo() and bar () methods use sleep () as a way to force the
deadlock condition to occur.

/ / An example of deadlock.
class A {
 synchronized void foo (B b) {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

391

Object Oriented Programming with C++ and Java

 String name = Thread.currenThread ().getName();

system.out.prinln (name + “entered A.foo”);

 try {
 Thrad.sleep (1000);
 }catch (Exception e) {
 System.out.println (“A Interupted”);
 }

System.out.println(name + “trying to call B last ()”);
b.last ();

}

synchronized void last () {
 system.out.println(“Inside A. last”);
 }
}

class B {
 synchronized void bar (A a) {
 String name = Thread.currentThread (). getName();
 System.out.println (name + “entered B.bar”);

 try {
 Thread.sleep(1000);
 } catch (Exception e) {
 System.out.println (“B interrupted”);
 }

 system.out.println (name + “trying to call A.last ()”);
 a.last ();
}

 synchronized void last () {
 System.out.println(“Inside A.last”);
 }
}

class Deadlock implements Runnable {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 392

Synchronization

 A a = new A () ;
 B b = new B ();

Deadlock () {
 Thread.currentThread ().setName (“MainThread”);
 Thread t = new Thread (this, “RachingThread”) ;
 t.start ();

a.foo (b); / / get lock on a in this thread.
system.out.println (“Back in main thread”);
}

 public void run() {
 b.bar(a); / / get lock on b in other thread.
 System.out.println (“Back in other thread”);
}

public static void main(String args []) {
 new Deadlock ();
 }
}

when you run this program, you will see the output shown here:

 MainThread entered A.foo

 RachinThread entered B.bar

 MainThread trying to call B. last ()

 RacingThread trying to call A. last ()

Because the program has deadlocked, you need to press CTRL-C to end the program.
You can see a full thread and monitor cache dump by pressing CTRL-BREAK on a
PC (or CTRL-\on Solaris).You will see that Racing Thread owns the monitor on b,
while it is waiting for the monitor on a . At the same time, Main Thread own a and is
waiting to get b. This program will never complete. As this example illustrates, if
your multithreaded program locks up occasionally, deadlock is one of the first
conditions that you should check for.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

393

Object Oriented Programming with C++ and Java

25.7 Short Summary

 When two or more threads need access to a shared resource, they need some way
to ensure that the resource will be used by only one thread at a time. The process
by which this is achieved is called synchronization.

 A special type of error that you need to avoid that relates specifically to

multitasking is deadlock, which occurs when two threads have a circular
dependency on a pair of synchronized objects.

25.8 Brain Storm

1. What is Synchronization?

2. Explain Synchronization Method.

3. What is the need of Inter thread Communication?

4. What is Deadlock?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 394

AWT GUI Components

Lecture - 26

AWT GUI Components

Objectives

In this lecture you will learn the following

 Knowing about AWT

 About GUI Components

 Java.awt Packages

 Event Handling

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

395

Object Oriented Programming with C++ and Java

Lecture - 26

26.1 Snap Shot

26.2 Java Coordinating System

26.3 Contexts & Graphics Objects

26.4 Overview of the Java.awt packages

26.5 Component Class

26.6 GUI Control Components

26.7 Event Handling

26.8 Short Summary

26.9 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 396

AWT GUI Components

26.1 Snap Shot

We now begin in-depth treatment of Java's Abstract Windowing Toolkit (AWT) - the
classes that comprise the java.awt package. The figure shows a portion of the
java.awt class his hierarchy that includes the classes covered in this chapter. Each
class in the figure inherits directly form class Object. Class Color contains methods
and constants for manipulating colors. Class Font contains methods and constants
for manipulating fonts. Class FontMetrics contains methods for obtaining font
information. Class Polygon contains methods for creating polygons. Class Graphics
contains methods for drawing strings lines rectangles and other shapes. Class
Toolkit provides methods for getting graphical information.

 FontMetrics Graphics

Obje

 Color Font Component Polygon Toolkit

26.2 Java Coordinating System

By default, the upper-left corner of the screen has the coordinates (0,0). A coordinate
pair is composes of an x coordinate and a y coordinate.

The x coordinate is the horizontal distance moving right from the upper-left corner.
The y coordinate is vertical distance moving down from the upper-left corner.

 0 x axis +x
 0

 (x,y)

 +y
 y axis
26.3 Graphics Contexts & Graphics Objects

A graphics context enables drawing on the screen in Java. A Graphics object manages
a graphics context by controlling how information is drawn. Graphics objects contain
methods for drawing, font manipulation, color manipulation etc. Every applet we

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

397

Object Oriented Programming with C++ and Java

have seen in the text that performs drawing on the screen has used the Graphics
object g to manage the applet's graphics context.

A Graphics class is an abstract class. That is Graphics object cannot be instantiated.
Class Component is the super class for many of the classes in the AWT. Component
method paint takes a Graphics object as an argument. This object is passed into the
paint methods by the system when a paint operation occurs for a Component. The
header for the paint method is :

 public void paint(Graphics g)

The Graphics object g receives a reference to an object of the system's derived
Graphics class. When an applet is initially executed the paint method is
automatically called. If paint method is to be called once again, a call is made to the
Component class repaint method. The repaint method requests a call to the
Component class update method as soon as possible to clear the Component's
background of any previous drawing, then update calls paint directly.

The general form of repaint and update is
 public void repaint()
 public void update (Graphics g)

Both methods are public and have a void return type. The update method takes a
Graphics object as an argument which is supplied automatically by method repaint.

Graphics methods for drawing string and characters and bytes. Method drawstring
draws a String. The method takes three arguments - String to be drawn, an x
coordinate, and a y coordinate. The String is drawn in the current color and font.
The current color is the color in which text is drawn. The point(x,y) corresponds to
the lower left corner of the string.

 The general form is
 public abstract void drawString (String string, int x, int y)
 string = string to be drawn
 int x = x coordinate
 int y = y coordinate

Method drawChars draws a series of characters. The method takes five arguments.
The first argument is an array of characters. The second argument specifies the
subscript in the array of the first character to be drawn. The third argument specifies
the number of character to be drawn. The last two arguments specify the coordinates
where drawing is to begin. The point (x, y) corresponds to the lower-left corner of
the first character drawn.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 398

AWT GUI Components

The general form is
 public void drawChars(char chars[], int offset, int number, int x, int y)
 chars[] = array to be drawn
 offset = starting subscript (index)
 number = number of elements to draw
 x and y = x and y coordianates

Method drawBytes draws a series of byes. Like the drawChars method, the
drawBytes method takes five arguments. The first argument is an array of bytes. The
second argument specifies the subscript in the array of the first byte to be drawn.
The third argument specifies the number of elements to be drawn. The last two
arguments specify the coordinates where drawing is to begin. The point(x,y)
corresponds to the lower-left corner of the bytes drawn

The general form is
 public void drawBytes (byte bytes [], int offset, int number, int x, int y)
 bytes [] = array of bytes
 offset = starting subscript
 number = number of elements to draw
 x and y = x and y coordianate

// Demonstrating drawString, drawChars and drawBytes
import java. applet.Applet;
import java.awt.Graphics;
public class DrawSCB extends Applet
{
 private String s = "using drawstring";
 private char c [] = { 'c', 'h', 'a','r', 's', ' ' ,' 8'}
 private byte b[] = { 'b','y','t','e', 1,2,3}

 pubic void paint (Graphics g)
 {
 g.drawstring(s,100,25);
 g.drawChars(c,2,3,100,50);
 g.drawBytes(b,0,5,100,50);
 }
}

In the program the drawstring method displays "using drawstring" at location 100,25
The statement
 g.drawString(c,2,3,100,50);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

399

Object Oriented Programming with C++ and Java

displays "ars" at location of (100,50). The second argument , 2, specifies that drawing
is to begin with subscript 2 of the character array c. The third argument, 3, specifes
that three elements will be drawn. Method drawBytes displays a set of byte sat
location (100,75).

26.4 Overview of the Java.awt Package

The Java Foundation classes (JFC) provides two frameworks for building GUI based
applications. The Abstract Windowing Toolkit (AWT) relies on the underlying
windowing system on a specific platform to present its GUI components. The other
GUI toolkit in the JFC is called Swing, implements a new set of lightweight GUI
components that are written in Java and have a pluggable look and feel .
The package java.awt provides the primary facilities of the AWT:

• Managing the layout of the components within the container object
• Support for event handling that is essential for user interaction in GUI based

systems.
• Rendering graphics in GUI components using color, fonts, images and polygons

 Components and containers

The partial class hierarchy is shown in the figure below. The figure depicts the
principal container classes that provides the underlying functionality for building
GUI based applications.

java.lang.Object

Component(abstract)

Container(abstract)

Window Panel

java.applet.A Dialog Frame

GUI Control Components are
concrete subclasses of this class

 Partial inheritance Hierarchy of Components and Container in AWT

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 400

AWT GUI Components

Component The Superclass of all non-menu-related components that
provides basic support for handling of events, changing of
component size, controlling of fonts and colors and drawing
of components and their controls.

Container A container is a component that can accommodate other
components and also containers. Containers provide the
support for building complex hierarchical graphical user
interface

Panel A panel is a container ideal for packing other component
and panels to build component hierarchies

Applet An applet is a specialized panel that can be used to develop
programs that run in a web browser

Window The window class represents a top-level window that has no
title, menus or borders

Frame A frame is an optionally user resizable and movable top-
level window that can have a title bar, an icon, and menus

Dialog The dialog class defines an independent optionally user
resizable window that can only have a title bar and border.
A Dialog window can be model, meaning that all input is
directed to this window until it is dismissed

26.5 Component Class

All non-menu-related elements that comprise a graphical user interface are derived
from the abstract class Component. The Component class specifies a large
assortment of methods for handling events, changing window bounds, controlling
fonts and colors and drawing components and their contents. A Component uses the
visual properties (font face, background color, foreground color, etc.) of its parent
container, unless set explicitly for the component.

The following utility methods are provided by component and its sub class:

Dimension getSize ()
 void setSize (int width, int height)
 void setSize (Dimension d)

The getSize() method can be used to get the size of a component in pixels. The return
object is of type Dimension, which has two public data members width, and height.
The setSize() methods can be used to set the size of a component in pixels.
 point getLocation ()

void setLocation (int x, int y)
 void setLocation (Point p)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

401

Object Oriented Programming with C++ and Java

The getLocation () method returns the coordinates of the top-left corner of the
component. The return object is of type point, which has two public data members x
and y. The setLocation methods can be used to move the component to the specified
locations

 Rectangle getBounds()
 void setBounds(int x, int y, int width, int height)
 void setBounds (Rectangle r)

The getBounds () method can be used to get the bounds of a component(both in size
and location). The return object is of type Rectangle, which has four public data
members: x, y, width and height. The setBounds () methods can be used to set the
bounds of a component

void setForeground(Color c)
 void setBackground(Color c)
The setForground() method can be used to set the foreground color of a component.
The setBackground () method can be used to set the background color of a
component. Normally the background colors is used to fill the area occupied by the
component and text is rendered in the component's area using the foreground color.

If foreground and background colors are not explicitly specified for a component the
corresponding values from this component's immediate container are used.

Font getFont ()
 void setFont(Font f)

The getFont() method returns the font used for rendering the text in a component.
The setFont () method can be used to set a particular font.

 void setEnabled(boolean b)

if the argument of this method is true, the component acts as normal, i.e., it is
enabled and can respond to user input and generate events. If the arguments is false,
then the component appears grayed out and does not respond to external stimuli. All
components are initially enabled

 void setVisible(boolean b)

A component is either shown on the screen or hidden, depending on the argument to
this method being either true or false respectively. It influences the visibility of the

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 402

AWT GUI Components

child components except for window, Frame, and Dialog classes, whose instance
must explicitly be made visible by this method.

Container Class

The abstract class Container is a subclass of the abstract class Component. It defines
methods for nesting components in a container. A container is a component that can
accommodate other components and thereby other containers since a container is
also a component by virtue of inheritance.

Containers provide the functionality for building complex, hierarchical graphical
user interfaces. They define a component hierarchy in contrast to the inheritance
hierarchy defined by classes. Container provide overloaded method add () to
include components in a container. A container uses a layout manager to position its
components.

Panel Class

The panel class is a concrete subclass of the Container class. It provides an
intermediate level for GUI organization. A panel is recursively nested, concrete
container that is not a top-level window. It also does not have a title, menus or
borders. It is therefore ideal for packing other components and panels to build
component hierarchy archies using the inherited add () method

Applet Class

The Applet class belongs to java.applet package. It is a subclass of the Panel class
and thus inherits its functionality. An applet is a specialized panel used to develop
programs than run in a web browser.

Frame Class

The Frame class is a subclass of the window class. It is used to create what we
usually mean by a GUI application window. A frame is an optionally user resizable
and movable top-level window that can have a title-bar, an icon and menus. A
Frame object is usually starting with GUI application and serves as the root of the
component hierarchy. A Frame object can contain several panels which in turn can
hold other GUI control components and other nested panels.

The Frame class defines two constructors
 Frame ()
 Frame(String title)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

403

Object Oriented Programming with C++ and Java

Dialog Class

The dialog is a subclass of the window class. The class defines an optionally user
resizable and movable top-level window with a title bar. Dialog box will not have
menu bar and an icon. A dialog window can direct all input to its window until it is
dismissed.
The Dialog class contains several constructors

Dialog(Frame parent)

 Dialog(Frame parent, boolean modal)

 Dialog(Frame parent, String title)

 Dialog(Frame parent, Stirng title, boolean model)

All constructors create an initially invisible dialog box.

//create a child frame window
import java.awt.*.;
import java.awt.event.*;
import java.applet.*;
/* <applet code = "Applet Frame" width = 300 height = 50>
</applet>
*/
//create a subclass of Frame
class SampleFrame extends Frame
{
 SampleFrame(Strint title)
{
 super(title);
 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter (this);
 // register it to receive those events.
 addWindowListener(adapter);
 }
public void paint (Graphics g)
{
 g.drawstring("this is in frame window",10,40);
}
}
class MyWindowAdapter extends WindowAdapter
{
 SampleFrame sampleFrame;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 404

AWT GUI Components

 public MyWindowAdapter(SampleFrame sampleFrame)
 {
 this.sampleFrame = sampleFrame;
 }
 public void windowClosing(WindowEvent we)
 {
 sampleFrame.setVisible(false);
 }
 }
 // creat frame window
 public class AppletFrame extends Applet
 {
 Frame f;
 public void init()
 {
 f = new SampleFrame("A frame window");
 f .setSize(250,250);
 f.setVisible(true):
 }
 public void start()
 {
 f.setVisible(true);
 }
 public void stop ()
 {
 f.setVisible(false);
 }
 public void paint (Graphics g)
 {
 g.drawstring("this is an applet window" 10, 20);
 }
 }

26.6 GUI Control Components

Graphical user interface control components are the primary elements of a GUI that
enable interaction with the user. They are all concrete subclasses of Component.
GUI control components for constructing menus are derived from the abstract class
MenuComponent.

The following three steps are essential in making use of a GUI control component.

• A GUI control component is created by calling the appropriate constructor

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

405

Object Oriented Programming with C++ and Java

• Button guiComponent = new Button("OK");

• The GUI control component is added to a container using a layout manager. This
usually involves invoking the overloaded method add () on a container with the
GUI contral as the argument:

• guiFrame.add(guiComponent);

• Listeners are registered with the GUI component so that they can receive events
when these occur. GUI components gernerate particular events response to user
actions

Button A button with a textual label, designed to invoke an

action when pushed, called a push button
Canvas A generic component for drawing and designing new

GUI component
Checkbox A checkbox with a textual label that can be toggled on

and off. Checkboxes can be grouped to represent radio
buttons

Choice A component that provides a pop-up menu choices.
Only the current choice is visible in the Choice
component

Label A lebel is a component that displays a single line read-
only, non-selectable text.

List A component that defines a scrollable list of text items
Scroll bar A slider to denote a position or a value
Text Field A component that implements a single line of optionally

editable text.
Text Area A component that implements multiple lines of

optionally editable text.

Running Example

Each GUI control component is described below. The following generic HTML file
can be modified to run the examples in a web browser or using an applet viewer.
Only appropriate class for the applet needs to be changes.

<!-- HTML file to run an applet-- >
<!-- Change Applet class name as appropriate -- >
<title > GUI Control Component</title>
<hr>
<applet code = "AppletClassName.class" width = 200 height = 200></applet>

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 406

AWT GUI Components

26.7 Event handling

The event class is central to the Java window event-generation and handling
mechanism. Event objects are generated by a user who interacts with a java window
program or applet and by the Java runtime system. User-generated events occur
when users make selections on a menu or press a key. Events generated by the
runtime system include errors and exceptions. They are handled predefined event-
handling methods that are defined by the component class and its subclasses, these
methods are overridden to perform custom event processing.

The event class defines numerous constants to identify the events that are defined for
the AWT classes. It is important that you review these constants to become familiar
with the types of events that may need to be handled by your programs. You’ll
become aware of the common event handling performed for the various window
components by working through the example programs.

The classes that represent events are at the core of Java’s event handling mechanism.
Thus, we begin our study of event handling with a tour of the event classes. As you
will see, they provide a consistent, easy-to-use means of encapsulating events.

At the root of the java event class hieraracy is EventObject, which is in java.util. It is
the superclass for all events.Its one constructor is shown here:

EventObject(Object src)
Here,src is the object that generates this event.

EventObject contains two methods :getSource() and toString().The getSource()

Method returns the source of the event.Its general form is shown here:

Object getSource()
As expected,toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of
EventObject. It is the superclass(either directly or indirectly)of all AWT-based events
used by the delegation event model. Its getID() method can be used to determine the
type of the event. The signature of this method is shown here:

int getID()

• EventObject is a superclass of all events.
• AWTEvent is a superclass of all AWT events that are handled by the

delegation event model.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

407

Object Oriented Programming with C++ and Java

The package java.awt.event defines several types of events that are generated by
various user interface elements. The Most important event class are given in the
below table.

Event Class Description
ActionEvent Generated when a button is pressed, a list item is Double-

clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or
becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract super class for all component input event classes

ItemEvent Generated when a checkbox or list item is clicked; also occurs

when a choice selection is made or a checkable menu item is
selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked,

pressed, or released; also generated when the mouse enters or
exits a component.

TextEvent Generated when the value of a text area or text area or text

 field is changed.

WindowEvent Generated when a window is acivated, close, deacivated,

deiconified, iconified, opened, or quit.
 Table: Main Event Classes in java.awt.event

Updates to the spreadsheet applet are driven by the occurrence of user events, such
as keypresses and mouse button clicks. As discussed events are usually handled with
either the action() method or the handleEvent() method. The action() method of the
components class is the preferred way to handle a limited number of events. The
handleEvent method of the Event class is the perferred way to handle multiple or
complex series of events.

When an applet has only a few possible events that deal with the mouse or
keypresses, you can call more direct methods that eliminate the necessary of nested if
or case statements to check event type. These methods, like the action() method, are
members of the component class.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 408

AWT GUI Components

26.8 Short Summary

 A Graphics object manages a graphics context by controlling how information is

drawn.

 The Abstract Windowing Toolkit (AWT) relies on the underlying windowing
system on a specific platform to present its GUI components.

 The package java.awt provides the primary facilities of the AWT Managing the
layout of the components within the container object Support for event handling
that is essential for user interaction in GUI based systems. Rendering graphics in
GUI components using color, fonts, images and polygons

 All non-menu-related elements that comprise a graphical user interface are

derived from the abstract class Component.

26.9 Brian Storm

1. What is AWT?

2. Explain the features of GUI.

3. What are the subclasses of Container class?

4. Explain each of the method with your own examples.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

409

Object Oriented Programming with C++ and Java

Lecture - 27

Components

Objectives

In this lecture you will learn the following

 Component

 Container

 Events

 Layouts

 Painting and Updating

 Understanding Layout Managers

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 410

Components

Lecture - 27

27.1 Snap Shot

27.2 Components

27.3 Containers

27.4 Events

27.5 Layouts

27.6 Painting and Updating

27.7 Understanding Layout Managers

27.8 Summary

27.9 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

411

Object Oriented Programming with C++ and Java

27.1 Snap Shot

In this lecture you will learn about component, container, events, layout and painting
and updating and understanding layout managers.

27.2 Component

The AWT component classes are all derived from a common base class: the
Component class. The Component class is an abstract class. This class defines the
elements common to all GUI components. The Component class is derived from the
Object class. The Component class also implements the ImageObserver interface.

The Component class provides a unified interface to all the graphic components of
the AWT. Figure shows all the AWT widgets derived from the Component class.

The components in this hierarchy can be divided into the following functional
groups:

 Simple widgets (buttons, checkboxes, and so on)
 Text controls
 The Canvas class

Simple Widgets

Canvas

Button

Checkbox

Container

Choice

Label

Scrollbar

List

Text
Component

Panel

Window

Dialog

Applet

Frame

TextArea

TextField

Component Object FileDialog

The Java AWT encapsulates many of the controls common to most GUIs. Specifically,
these are the Button, Checkbox, Choice, Label, List, and Scrollbar classes. Figure 16.2
shows an applet that displays the AWT simple widgets.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 412

Components

The following code shows the Simple applet, which contains the simple AWT
widgets. The applet's init() method creates an example of each simple widget and
adds it to the applet.
import java.awt.*;

public class Simple extends java.applet.Applet {

 public void init() {

 Button button = new Button("Quit") ;
 Checkbox checkbox = new Checkbox("Test") ;
Both the Choice and List objects include addItem() methods. These methods allow
you to fill the control with the items you specify. Unlike some GUIs, the AWT Choice
and List controls do not sort the items they contain. They are displayed in the order
in which you add them.

 Choice choice = new Choice() ;

 // fill the Choice

 choice.addItem("Clinton") ;

 choice.addItem("Dole") ;

 choice.addItem("Perot") ;

 choice.addItem("Browne") ;

 choice.addItem("Nader") ;

 Label label = new Label("This is a label");

 List list = new List(5, false) ;

 // fill the List

 list.addItem("Clinton") ;

 list.addItem("Dole") ;

 list.addItem("Perot") ;
 list.addItem("Browne") ;
 list.addItem("Nader") ;

Scrollbar scrollbar = new Scrollbar(scrollbar.HORIZONTAL);

To display these controls, you must add them to the applet's layout using the add()
method:
 // add the controls to the default layout

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

413

Object Oriented Programming with C++ and Java

 add(button) ;
 add(checkbox) ;
 add(choice) ;
 add(label) ;
 add(list) ;
 add(scrollbar) ;

 }

}
This applet displays the simple widgets. To be truly useful, an applet should do
more than just display the controls-the applet must also be interactive. This brings up
the topic of event handling. The DemoFrame applet presented later in this chapter
demonstrates event handling.

At the top of the AWT Hierarchy is the Component class. Component is an abstract class that encapsulates all of the
attributes of a visual component.All user interface elements that are displayed on the screen and that interact with
the user are subclass of Component. It defines over a hundred public methods that are responsible for managing
events,such as mouse and keyboard input,positioning and sizing the window, and repainting.

A Component object is responsible for remembering the current foreground and background colors and the currently
selected text font.

Controls are component that allow a user to interact with your application in various ways.

Control Fundamentals

The AWT supports the following types of controls

• Labels

• Push buttons

• Check boxes

• Choice Lists

• Lists

• Scroll bars

• Text editing

These controls are subclasses of Component.

Adding and Removing Controls

To include a control in a window, you must add it to the window. To do this, you must first create an instance of the
desired control and then add it to a window by calling add(). Which does Container define. The add() method has
several forms.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 414

Components

 Component add(Component compobj)

Here, compobj is an instance of the control that you want to add. A reference to compobj is returned. Once a control has
been added, it will automatically be visible whenever ,its parent window is displayed. Suppose, you will want to
remove a control from a window when the control is no longer needed. To do this, call remove().This method is also
defined by Container.

It has this general form:

 Void remove(Component obj)

Here, obj is a reference to the control you want to remove.You can remove all controls by calling removeAll().

The Component Event Class

A Component Event is generated when the size position, or visibility of a component is changed. There are four
types of component events. The ComponentEvent class defines integer constants that can be used to identify them.
The constants and the meanings are shown here.

COMPONENT_HIDDEN The component was hidden
COMMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event.The type of the event is specified by type.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent, FocusEvent, KeyEvent,
MouseEvent, and WindowEvent.

The getComponent() method returns the component that generated the event.It is shown here:

 Component getComponent()

27.3 Container

The Container class is a subclass of Component. It has additional methods that allow other Component objects to be
nested within it. Other Container objects can be stored inside of a Container(since they are themselves instances of

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

415

Object Oriented Programming with C++ and Java

Component).This makes for a multileveled containment system. A Container is responsible for laying out any
components that is contains.

The subclasses of the Container is

• Panel
• Window

The ContainerEvent Class:

A ContainerEvent is generated when a component is added to or removed from a container. There are two types of
container events. The ContainerEvent class defines int constants that can be used to identify them.
COMPONENT_ADDED and COMPONENT_REMOVED. They indicate that a component has been added to or
removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src,int type,Component comp)

Here, src is a reference to the container that generated this event. The type of the event is specified by type, and the
component that has been added to or removed from the container is comp. You can obtain a reference to the container
that generated this event by using the getContainer() method, shown here:

Container getContainer()

The getChild() Method returns a reference to the component that was added to or removed from the container. Its
general form is shown here:

Component getChild()

27.4 Events

In the delegation model, an event is an object that describes a state change in a
source. It can be generated as a consequence of a person interacting with the
elements in a graphical user interface. Some of the activities that causes events to be
generated are pressing a button, entering a character via the keyboard, selecting an
item in a list, and clicking the mouse. Many other user operations could also be cited
as examples.

Events may also occur that are not directly caused by interactions with a user
interface. For example, an event may be generated when a timer expires, a counter
exceeds a value, a software or hardware failure occurs, or an operation is completed.
You are free to define events that are appropriate for your application.

27.5 Layouts

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 416

Components

Layout Classes

The AWT contains a group of classes designed to handle placement of controls in
Container objects. These are the layout classes. All layout classes are derived directly
from Object. These classes all implement the LayoutManager interface.

The AWT implements the following layout classes:

 FlowLayout
 BorderLayout
 CardLayout
 GridLayout
 GridBagLayout

These classes provide a flexible, platform-independent means of arranging
Component objects in your Container objects. It is possible that these five classes
provide all the flexibility your applets and applications need. If you have specific
needs, you can implement your own layout class by deriving it from Object and
implementing the LayoutManager interface.

27.6 Painting and updating

The paint() method is called each time your applet’s output must be redrawn. This situation can occur for several
reasons. For example, the window in the which the applet is running may be overwritten by another window and
then uncovered, or the applet window may be minimized and then restored. Paint() is also called when the applet
begins execution. Whatever the cause, whenever the applet must redraw its output, paint() is called. The paint()
method has one parameter of type Graphics. This parameter will contain the graphics context, which describes the
graphics environment in which the applet is running. This context is used whenever output to the applet is required.

The method paint is used to paint or repaint the screen. It is automatically called by repaint or can be called explicitly
by the applet. The applet calls paint when the browser requires a repaint, such as when an obscured applet is
brought to the front of the screen again.

Paint has a fixed format. It always must be named paint, have a return type of void, and be declared public.
However, unlike init and start, it does have an argument, of type graphics. This is a predefined type in java that
contains many of the methods for writing graphics to the screen. Here is an example of a paint method:

 public void paint(Graphics g) {

g.drawstring(“counter = “ + counter, 10,10);

}

This method writes the value of counter to the screen each time it is invoked. Combine this with the start and repaint
methods. The start method increments counter and then calls repaint. The screen displays the new value of counter
every time it is updated. The compiler does not require a paint method. It overrides a default method provided by
java.applet.Applet. However, if you do not be able to write anything to the screen.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

417

Object Oriented Programming with C++ and Java

After you have initialized the spreadsheet, you must display it. This is usually done by means of the apit b() method,
which draw all the objects added during the initialization phase. As discussed in “Step 4. Sizing spreadsheet, the
object should sized according to the dimensions of the frame or a key constraint such as the font size. You should
also paint the objects in the orders they are to be added to the frame.

The spreadsheet applet uses many interesting techniques to place objects precisely on the frame. As shown in
Listing 20.8, centering the title horizontally in a in the title area involves five steps.

1. Obtaining the dimension of the frame
2. Determining the pixel of the title from the width of the frame
3. subtracting the length of the title form difference in font size
4. Adding in a factor that accounts for differences in font size.
5. Dividing the result 2

The value you obtain by doing this is the x coordinates for the beginning o the title. You also need a y coordinate for
the title. Because the height of the title area is relative to the font size used, the font size is used to help determine
this coordinate.

Next, the paint () method draws the input area by simply filling a rectangle with a color based on the value of the
inputColor object. The starting location for the upper left corner of the input area is determined by moving vertically
down the height of one cell. The width of the input area is set to the width of the frame, and the height is set to the
height of one cell. Finally the paint () method draws the individual cells,. To crater them, use a series of draws, the
find adds the horizontal lines for rows using the draw3DRect method of the Graphics class . As the 3D lines are
drawn to the frame, blue numerals representing the row numbers are added as Appropriate. The second draw adds
the vertical lines for columns, again using the draw3DRect method. As the 3D lines are drawn to the frame, red
letters representing the column letter are added as appropriate. Finally data is added to the cells by a painting the
values associated with a cell precisely within the rectangles created by the previous draws The last section of code in
the paint () method, although only a few lines, is important to the spread sheet., the line of code using the
draw3DRect() method draws a 3D line above the input area and on the left side of the frame. The next to last line
calls the paint () methods of the inputArea class, which ensures that the data associated with the currently selected
cell is painted to the input area.

Painting the frame

Public synchronized void paint(Graphics g){

int i,j;

int cx,cy;

char 1[] = new char[1];

Dimension d = sixe();

//draws the title on the frame

g.setFont(titleFont);

i=g.getFontMetrics().stringWidth(title);

g.drawString((title = =null)? “Spreadsheet”:title,(d.width-i +(fontSize *3/2))/2,(fontSize *3/2));

//draws the input area on the frame

g.setColor(inputColor);

g.fillRect(0,cellHeight, d.width, cellHeight);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 418

Components

g.setFont(titleFont);

for(i=0;i<rows+1;i ++)

{ cy=(i+2)*cellHeight;

g.draw3DRrect(0,cy,d.width,2,true);

if(I<rows) {

g.setColor(Color.blue);

g.drawString(“”+(I+1),fontSize,cy+(fontSize * 3/2));

}

}

g.setColor(Color.red);

for(i=0;I<columns;i++)

{

cx=i*cellWidth;

g.setColor(getBackgroung());

g.draw3DRect(cx + rowLabelWidth,2*cellHeight,1,d.height,true);

if(I<columns) {

g.setColor(Color.red);

i0]=(char)((int)’A’+i);

g.drawString(new String(i),cx+rowLabelWidth+(cellWidth/2),d.height – 3);

}

}

for(i=0;i<rows;i++)

{for(j=0;i<columns;j++)

{ cx=(j*cellWidth)+2+rowLabelWidth;

cy=(i+1)*cellHeight)+2+titleHeight;

if(cells[I][j] != null) {

cells[I][j].paint(g,cx,cy);

}

}

}

g.setColor(getBackground());

g.draw3DRect(0,titleHeight,d.width,d.height-titleHeight,false);

inputArea.paint(g,1,titleHeight+1);

}

When changes occur in the applet, you must repaint the applet’s frame using the repaint () method of the applet
class, if you recall earlier discussions on repainting the applet’s frame, you probably know that the repaint () method
calls the update () method of the applet class, which in turn clarets the screen and calls the paint () methods. The
paint method then draws in the applet’s frame. Clearing and then drawing the frame produces a noticeable, flicker.
To reduce it, usually it’s best to override the update () method of the applet class. You do this by defining an
update() method in your applet that does not clear the frame at all before painting it and, if possible clears only the

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

419

Object Oriented Programming with C++ and Java

parts of the screen that have changed. Listing 20.9 shows the update () method for the spreadsheet applet. This
method uses a boolean value Called full update to determine whether to repaint the whole frame or just a portion of
it. When only a portion must be repainted, the appropriate section is redrawn. The particle update occurs when the
used selects a cell and the applet places the data associated with the cell in the input area and redraws the cell with a
white background. When the entire applet frame needs to be up dated, the update() method calls the paint method
directly without clearing the frame first.

Updating the frame

Public void update(Graphics g) {

If(! FullUpdate) {

Int cx,cy;

g.setFont(titleFont);

for(int i=0;i<rows;i++)

{ for(int j=0;j<columns;j++)

 { if (cells[i][j].needRedisplay) {

 cx=(j * cellWidth)+(fontSize*2) + rowLabelWidth;

 cy=((i+1) cellHeight)+(fontSize*2)+titleHeight;

cells[I][j].paint(g.cx,cy);

}

}

}

}

else {

paint(g);

fullUpdate = false;

}

}

27.7 Understanding Layout Managers

All of the component that we have shown so far have been positioned by the default layout manager. As we
mentioned at the beginning of this chapter , a layout manager automatically arranges your controls within a window
by using some type of algorithm. If you have programmed for other GUI environments, such as Windows, then you
are accustomed to laying out your controls by hand. While it is possible to lay out Java controls by hand too, you
generally won’t want to, for two main reasons. First, it is very tedious to manually layout a large number of
components. Second, sometimes the width and height information is not yet available when you need to arrange
some control, because the native toolkit component haven’t been realized. This is a chicken-and-egg situation. it is
pretty confusing to figure out when it is okay to use the size of a given component to position it relative to another.

Each Container object has a layout manager associated with it. A layout manager is an instance of any class that
implements the LayoutManager interface. The layout manager is set by the setLayout() method. If no call to
setLayout() is made, then the default layout manager is used. Whenever a container is resized ,the layout manager is
used to position each of the components within it.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 420

Components

 The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If you wish to disable the layout manager and position
components manually, pass null for layoutObj. If you do this, you will need to determine the shape and position of
each component manually, using the setBounds() method defined by Component. Normally, you will want to use a
layout manager.

Each layout manager keeps track of a list of components that are stored by their names. The layout manager is
notified each time you add a component to a container. Whenever the container needs to be resized, the layout
manager is consulted via its minimumlayoutSize() and preferredLayoutSize() methods.Each component that is being
managed by a layout manager contains the getPreferredSize() and getMinimumSize() methods. These return the
preferred and minimum size required to display each component. The layout manager will honor these requests if at
all possible, while maintaining the integrity of the layout policy. You may override these methods for controls that
you subclass. Default value are provided otherwise.

Java has several predefined LayoutManager classes. You can use layout manager that best fits your application.

The FlowLayout Class

The FlowLayout class allows you to lay out controls in rows. Controls are placed in
rows as long as there is room. After a row has been filled, subsequent controls are
placed in the next row. Figure 16.7 shows the flow layout applet.

The flow applet creates a simple FlowLayout:
import java.awt.*;

public class flow extends java.applet.Applet {
 public void init() {
 setLayout(new FlowLayout()) ;
 add(new Button("One")) ;
 add(new Button("Two")) ;
 add(new Button("Three")) ;
 add(new Button("Four")) ;
 add(new Button("Five")) ;
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

421

Object Oriented Programming with C++ and Java

In this applet, the FlowLayout constructor is called with no parameters. There are
two other overloaded constructors for the FlowLayout class. These allow you to fine
tune the FlowLayout to meet your particular needs.

The first constructor takes one parameter. By passing FlowLayout.LEFT,
FlowLayout.CENTER, or FlowLayout.RIGHT, you specify the alignment for the
controls. The default alignment (when you don't specify one) is
FlowLayout.CENTER. Therefore, to align the buttons on the left in the flow applet,
you replace the call to setLayout() with this call:
setLayout(new FlowLayout(FlowLayout.LEFT)) ;

Layouts also give you control over the amount of space between controls. The
FlowLayout() method fills the first row and then each subsequent row as necessary.
If the layout requires more than one row, you can specify the vertical spacing as well.
The constructor that does this takes an alignment parameter followed by two
parameters specifying the spacing between controls. To make the flow applet place
its controls centered with ten pixels of horizontal gap and five pixels of vertical gap,
use the following code:

setLayout(new FlowLayout(FlowLayout.CENTER, 10, 5)) ;

The BorderLayout Class

The AWT BorderLayout class places controls so that they fill their Container object.
The controls are placed according to a geographic position that you specify. Controls
can be placed on the north, south, east, and west edges of the Container. You can also

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 422

Components

place a control in the center of the Container. The centered control is then expanded
to fill the remaining space. Figure shows the border applet with five controls. The
border applet creates a simple BorderLayout:
import java.awt.*;

public class border extends java.applet.Applet {
 public void init() {
 setLayout(new BorderLayout()) ;
 add("North", new Button("NORTH")) ;
 add("South", new Button("SOUTH")) ;
 add("East", new Button("EAST")) ;
 add("West", new Button("WEST")) ;
 add("Center", new Button("CENTER")) ;
 }
}

When you create a BorderLayout, you can specify vertical and horizontal gap values
as you can with the setLayout() method (described in the flow applet).

The CardLayout Class

The AWT CardLayout class is unique. Rather than placing multiple controls in a
Container object, this layout displays the controls one at a time (much like the
familiar deck of cards in the ubiquitous Solitaire game). The controls that are
displayed may, in fact, be composite controls. Therefore, you can present entirely
different sets of controls to the user in a manner similar to the tabbed dialog boxes

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

423

Object Oriented Programming with C++ and Java

that Microsoft Windows uses. Figure shows an applet with five buttons laid out in a
CardLayout fashion.
The card applet creates a CardLayout with five buttons:
import java.awt.*;

public class card extends java.applet.Applet {

 CardLayout layout ;

 public void init() {
 layout = new CardLayout() ;
 setLayout(layout) ;

 add(new Button("First")) ;

 add(new Button("Second")) ;

 add(new Button("Third")) ;

 add(new Button("Fourth")) ;

 add(new Button("Fifth")) ;

 }

 public boolean action(Event evt, Object arg) {

 if (evt.target instanceof Button) {
 layout.next(this) ;
 return true ;
 }
 return false ;
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 424

Components

The card applet places five Button objects in a CardLayout. When any button is
pressed, the action() method calls the CardLayout's next() method to display the next
card in order. This layout also allows you to label the various controls that are added.

The add() method takes an optional String parameter that labels the controls you
add. The following call adds a Button labeled my button with the label Push Me:

add("my button", new Button("Push Me") ;

Once the controls have labels, you can display them without having to show them in
order, without calling the layout's next() method. To display my button, simply call
the layout's show() method:
show(this, "my button") ;

The show() method displays a specified control; the next() method displays the next
control in order. The CardLayout class provides the following functions to navigate
the controls in the layout:

 first(Container)

 last(Container)

 next(Container)

 previous(Container)

 show(Container, String)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

425

Object Oriented Programming with C++ and Java

All these navigational functions take a reference to a Container object as a parameter.
The show() method takes a String containing the label given to the control when it
was added.

The GridLayout Class

As its name suggests, the GridLayout class places controls in the Container in a grid.
It is important to note that this is a regular grid-all the grid cells are the same size. The
applet in Figure shows a GridLayout.

The grid applet defines a grid with two rows and three columns. The add() method
adds each control starting with row 1, column 1 followed by row 1, column 2 and so
on.
import java.awt.*;

public class grid extends java.applet.Applet {
 public void init() {
 setLayout(new GridLayout(2, 3)) ;

 add(new Button("One")) ;

 add(new Button("Two")) ;

 add(new Button("Three")) ;

 add(new Button("Four")) ;

 add(new Button("Five")) ;

 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 426

Components

You can also create a GridLayout with vertical and horizontal gap values by using
the setLayout() method as you do with the FlowLayout and BorderLayout classes.

The GridBagLayout Class

The GridBagLayout class is complex enough to fill an entire chapter by itself. This
class was added to the AWT very late in the Java beta. Therefore, many early
acceptors of Java didn't use this layout at all. Some early books omit it completely.

Of all the layouts offered by the AWT, GridBagLayout is the most versatile. Despite
its funny name, once you learn how to use GridBagLayout, it will become an
indispensable part of your Java toolkit.

Like GridLayout, GridBagLayout places controls in a Container in a grid. The
difference is that in a GridBagLayout, controls can span any number of grid cells
vertically, horizontally, or both. Controls can be placed in any grid cell. Cells can be
of differing sizes as well.

The gridbag applet displays five buttons in a GridBagLayout arrangement:
import java.awt.*;

public class gridbag extends java.applet.Applet {

 public void init() {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

427

Object Oriented Programming with C++ and Java

 Button b1 = new Button("One") ;
 Button b2 = new Button("Two") ;
 Button b3 = new Button("Three") ;
 Button b4 = new Button("Four") ;
 Button b5 = new Button("Five Thousand") ;
 GridBagLayout gridbag = new GridBagLayout();
 setLayout(gridbag) ;
 {
GridBagConstraints c = new GridBagConstraints();
 c.fill = GridBagConstraints.BOTH ;
 c.gridx = 1 ;
 c.gridy = 1 ;
 gridbag.setConstraints(b1, c);
 add(b1) ;
 }
 {
 GridBagConstraints c = new GridBagConstraints();

 c.anchor = GridBagConstraints.WEST ;
 c.gridx = 2 ;
 c.gridheight = 2 ;
 gridbag.setConstraints(b2, c);
 add(b2) ;
 }
 {
 GridBagConstraints c = new GridBagConstraints();

 c.fill = GridBagConstraints.BOTH ;
 c.gridx = 1 ;
 c.gridy = 2 ;
 c.gridwidth = 2 ;
 gridbag.setConstraints(b3, c);
 add(b3) ;
 }
 {
 GridBagConstraints c = new GridBagConstraints();
 c.fill = GridBagConstraints.BOTH ;
 c.gridx = 1 ;
 c.gridy = 3 ;
 c.gridwidth = 3 ;
 gridbag.setConstraints(b4, c);
 add(b4) ;

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 428

Components

 }
 {
 GridBagConstraints c = new GridBagConstraints();
 c.fill = GridBagConstraints.VERTICAL ;
 c.gridx = 3 ;
 c.gridy = 1 ;
 c.gridheight = 2 ;
 gridbag.setConstraints(b5, c);
 add(b5) ;
 }
 }
}

The key to using GridBagLayout is the GridBagConstraints class. This class is used to
encapsulate information about each control that is added to the layout. Setting the
class data members determines how the controls will be placed.

To use a GridBagLayout, you must create a GridBagConstraints object. Then set the
data members of the GridBagConstraints object to appropriately lay out the given
control. Next, call the GridBagLayout's setConstraints() method to associate a
GridBagConstraints object with a control. Finally, add the control.

The following GridBagConstraints public data members determine how your
controls are placed:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

429

Object Oriented Programming with C++ and Java

 The anchor member specifies how a control is displayed if it is smaller than the

grid cell in which it is placed. This member can be set to CENTER, NORTH,
SOUTH, EAST, T WESTT, NORTHEAST, SOUTHEAST, NORTHWEST, or
SOUTHWEST. T

 The fill member lets a control grow to fill its allotted grid cells if the cells are

larger than the control's default size. The choices for this member are BOTH,
HORIZONTAL, VERTICAL, and NONE.

 The gridheight and gridweight members determine how many grid cells a
control takes up.

 The gridx and gridy members specify the row and column (in grid coordinates)

at which to place the control.

 The ipadx and ipady members specify the vertical and horizontal gap (or
padding) for components.

 The weightx and weighty members specify how excess space is assigned to the

various components if the container in which they are embedded is resized.

 The Insets member is a class that specifies the margins of a Container that has a
GridBagLayout.

By using the GridBagLayout and GridBagConstraints classes, you can produce layouts to meet nearly all
your needs. If these are not flexible enough for you, there is always the option of creating your own

LayoutManager. You create your own LayoutManager by creating a class (subclassed from Object) that

implements the LayoutManager interface.

27.8 Summary

♣ Component is an abstract class that encapsulates all of the attributes of a visual component.

♣ Container is a subclass of component

♣ A Layout manager automatically positions components within a container thus, the appearance of a window is
determined by a combination of the controls that it contains and the layout manager used to position them

27.10 Brain Storm

1. Which one is the base class of component class?

2. What are the derived class of container class?

3. What is Painting?

4. Why we use repaint() method?

5. Explain about Layouts?

6. How we can declare the different types of Layout in applet?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 430

EventListener

Lecture - 28

EventListener

Objectives

In this lecture you will learn the following

 Event class

 EventListener

 Interfaces of EventListener

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

431

Object Oriented Programming with C++ and Java

Lecture - 28

28.1 Snap Shot

28.2 Event class

28.3 Event Source

28.4 EventListener

28.5 Interfaces Of EventListener

28.6 Short Summary

28.7 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 432

EventListener

28.1 Snap Shot

In this lecture you will learn about Events , Event handling methods, EventListener
method, and We also know about Examples of EventListener.

28.2 Event Class

GUI Event Basics AWT Event Flow, Event and Listener types

The classes that represent events are at the core of Java’s event handling mechanism.
Thus, we begin our study of event handling with a tour of the event classes. As you
will see, they provide a consistent, easy-to-use means of encapsulating events.

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is
the superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.

EventObject contains two methods: getSource() and toString().The getSource()
Method returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of
EventObject. It is the superclass(either directly or indirectly)of all AWT-based events
used by the delegation event model. Its getID() method can be used to determine the
type of the event. The signature of this method is shown here:

int getID()

• EventObject is a superclass of all events.
• AWTEvent is a superclass of all AWT events that are handled by the

delegation event model.

The package java.awt.event defines several types of events that are generated by
various user interface elements. The Most important event classes are given in the
below table.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

433

Object Oriented Programming with C++ and Java

Event Class Description

ActionEvent Generated when a button is pressed, a list item is
 Double-clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved,
 resized, or becomes visible.

ContainerEvent Generated when a component is added to or removed
 from a container.

FocusEvent Generated when a component gains or loses keyboard
 focus.

InputEvent Abstract super class for all components input event
 classes

ItemEvent Generated when a checkbox or list item is clicked; also
 occurs when a choice selection is made or a checkable
 menu item is selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked,
 pressed, or released; also generated when the mouse
 enters or exits a component.

TextEvent Generated when the value of a text area or text area or
 text field is changed.

WindowEvent Generated when a window is activated, closed,
 deactivated, deiconified, iconified, opened, or quit.

Table: Main Event Classes in java.awt.event

28.3. Event Sources

A source is an object that generates an event. This occurs when the internal state of
that object changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications
about a specific type of event. Each type of event has its own registration method.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 434

EventListener

Here is the general form:

Public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For
example, the method that registers a keyboard event listeners is called
addKeyListener(). The method that registers a mouse motion listener is called
addMouseMotionListener(). When an event occurs, all registered listeners are
notified and receive a copy of the event object. This is known as multicasting the
event. In all cases, notifications are sent only to listeners to receive them.

Some sources may allow only one listener to register. The general form of such a
method is this:

Public void addTypeListner(TypeListener el)
Throws java.util.TooManyListnersException

Here, Type is the name of the event and el is a reference to the event listener. When
such an event occurs, the registered listener is notified. This is known as unicasting
the event.

A source must also provide a method that allows a listener to unregistered an
interest in a specific type of event. The general form of such a method is this:

Public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the eventlistener. For
example, to remove a keyboard listener, you would call removeKeyListener().
The methods that add or remove listeners are provided by the source that generates
events. For example, the Component class provides methods to add and remove
keyboard and mouse event listeners.

Some type of Event classes

The ActionEvent Class

An ActionEvent is generated when a button is pressed, a list item is double

clicked, or a menu Item is selected. The ActionEvent class defines four integer

constants that can be used to Identify any modifiers associated with an action

event:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

435

Object Oriented Programming with C++ and Java

ALT_MASK, CTRL_MASK,META_MASK,and SHIFT_MASK.In addition,

there is an integer constant, ACTION_PERFORMED, which can be used to

identify action events.

ActionEvent has these two constructors:

ActionEvent(Object src, int type,String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is
specified by Type, and its command string is cmd. The argument modifiers indicates
which modifiers keys(ALT,CTRL,META, and/or SHIFT)were pressed when the
event was generated.

You can obtain the command name for the invoking ActionEvent Object by using the
getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a
command name equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier
keys(ALT,CTRL,META,and/or SHIFT) were pressed when the event was
generated.Its form is shown here:

int getModifiers()

28.4 Event Listeners

 In the program, a Java object can respond to an event. The object is called the
event Listener. The object that creates the event is called Event Source.

 Event Source Event
 Listener
 Creates an Responds for
 Event the event

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 436

EventListener

A listener is an object that is notified when an event occurs. It has two major
requirements. First, it must have been registered with one or more sources to receive
notifications about specific types of events. Second, it must implement methods to
receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found
in java.awt.event. For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged or moved .Any object
may receive and process one or both of these events if it provides an implementation
of this interface.

28.5. Using EventListener Examples

1. The ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action
event occurs. Its general form is shown here:

 void actionPerformed (ActionEvent ae)

2. The Adjustment Listener interface

This interface defines the adjustementValueChanged() method that is invoked when
an adjustment event occurs. Its general form is shown here:

void adjustmentValue Changed (AdjustementEvent ae)
3. The ComponentListener Interface

This interface defines four methods that are invoked when a component is resized,
moved shown ,or hidden.. Their general forms are shown here:

 Void componentResized (componentEvent ce)

 Void componentMoved (componentEvent ce)

 Void componentShown (componentEvent ce)

 Void componentHidden (componentEvent ce)

4. The ContainerListener interface

This interface contains two methods. When a component is added to a container,
componentAdded () is invoked. When a component is removed from a container,
componentRemoved () is invoked. Their general forms are shown here:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

437

Object Oriented Programming with C++ and Java

 Void componentAdded (ContainerEvent ce)
 Void componentRemoved (ContainerEvent ce)

5. This FocusListener Interface

This interface defines two methods, when a component obtains keyboard focus,
focusGained() is invoked . When a component loses keyboard focus, focusLost() is
called. Their general forms are shown here:

Void focusGained (FacusEvent fe)
 Void foucusLost(FocusEvent fe)

6. The ItemListener Interface

This interface defines the itemStateChanged () method that is invoked when the
state of an item changes. It general form is shown here:

 Void itemStateChanged (ItemEvent ie)

7. The KeyListener Interface

This interface defines three methods. The KeyPressed () and KeyReleased ()
methods are invoked when a key is pressed and released respectively. The
KeyTyped () methods is invoked when a character has been entered.

For example, if a user presses and releases the a key, three events are generated in
sequence, key pressed, typed and released. If a user presses and releases the Home
key, two key events are generated in sequence key pressed and released.

The general forms of these methods are shown here:

 void keyPressed (keyEvent ke)
 void keyReleased (keyEvent ke)
 void keyTyped (keyEvent ke)

 8. The mouse Listener Interface

This interface defines five methods. If the mouse is pressed and released at the same
point, mouseCliked() is invoked. when the mouse enters a component the
mouseEntered () methods is called. When it leaves, mouseExited () is called. The
mousePressed () and mouseRelased () methods are invoked when the mouse is
pressed and released respectively.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 438

EventListener

The general forms of these methods are shown here:

 void mouseClicked(MouseEvent me)
 void mouseEntered (MouseEvent me)
 void mouseExited(MouseEvent me)
 void mousePressed(MouseEvent me)
 void mouseReleased (mouseEvent me)

 9. The MouseMotionListener Interface

This interface defines two methods. The mouseDragged () method is called
multiple times as the mouse is dragged. The mouseMoved() method is called
multiple times as the mouse is moved. their general forms are shown here:
 void mouseDragged(MouseEvent me)
 void mouseMoved(MouseEvent me)

 10. The TextListener Interface

This interface defines the textChanged() method that is invoked when a change
occurs in a text area or textfield. Its general form is shown here:

 void textChanged(TextEvent te)

 11. The WindowListener Interface

This interface defines seven methods. The windowActivated() and
windowDeactivated() methods are invoked when a window is activated or
deactivated, respectively. If a window is iconified, the windowIconified() method is
called. when a window is deiconified, the windowDeiconified() method is called.
When a window is opened or closed, the windowOpened() or windowClosed()
methods are called, respectively. The windowClosing() method is called when a
window is being closed. The general forms of these methods are

void windowActivated(WindowEvent we)

 void windowClosed(WindowEvent we)
 void windowClosing(WindowEvent we)
 void windowDeactivates(WindowEvent we)
 void windowDeiconified(WindowEvent we)
 void windowIconified(WindowEvent we)
 void windowOpened(WindowEvent we)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

439

Object Oriented Programming with C++ and Java

programming using the delegation event model is actually quite easy. Just follow
these two steps:

 Implement the appropriate interface in the listener so that it will receive the
type of event desired.

 Implement code to register and unregistered the listener as a recipient for the

event notifications.

Remember that a source may generate several types of events. Each event must be
registered separately. Also, an object may register to several types of events, but it
must implement all of the interfaces that are required to receive these events.

28.6 Short Summary

♣ When a program is running on a machine the user can interrupt through the

input devices. These interruptions are called events.

♣ In Java each events is considered as an object of a class.

♣ In the delegation model, an event is an object that describes a state change in

a source.

♣ A source is an object that generates an event.

♣ A listener is an object that is notified when an event occurs.

28.7 Brain Storm

1. What is Event class?

2. In java.awt package what are all the important event classes are placed?

3. What are the interfaces we used for EventListener?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 440

Controls & Events

Lecture - 29

Controls & Events

Objectives

In this lecture you will learn the following

 Using Widgets

 Making Windows

 Processing Mouse Events

 Handling Keyboard Events

 Canvas

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

441

Object Oriented Programming with C++ and Java

Lecture - 29

29.1 Snap Shot

29.2 Example for using Widgets(Button, Check Box, List & Choice)

29.3 Making Window

29.4 Handling Keyboard Events

29.5 Processing Mouse Events

29.6 Mouse Event Class

29.7 Canvas

29.8 Short Summary

29.9 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 442

Controls & Events

29.1 Snap Shot

In this lecture you will learn about various classes such as Button, Checkbox, List,
Choice and about mouse & keyboard events and about canvas.

29.2 Examples for using Widgets (Button, Checkbox, List and Choice)

The button class demonstrates a push-button that can only have a textual label.

Button ()
Button(String label)

These constructors are used for creating buttons.

String getLabel()
 void setLabel(String label)

These methods can be used to get and set the textual label.

// Illustrating button

import java.awt.*;
import jave.applet.*;
public class ButtonApplet extends Applet
{
 public void init ()
 {
 Button button = new Button("Don’t push me");
 add(button);
 }
}

Checkbox and Checkbox Group

The Checkbox class implements a GUI checkbox with a textual label. A Checkbox
object can be in one of the two states:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

443

Object Oriented Programming with C++ and Java

• true: meaning that it is checked
• false: meaning that it is unchecked

The Checkbox class has the following constructors

Checkbox()
 Checkbox(String label)
 Checkbox(Stiring label, boolean state)
 Checkbox(String label, boolean state, CheckboxGroup group)

If the state is not explicitly specified in the appropriate constructor the initial state is
unchecked. The state of the checkbox can be toggled by clicking on the checkbox.

A checkbox can be incorporated in a CheckboxGroup to implement radio buttons.
Unless the CheckboxGroup is specified in the appropriate constructor, the checkbox
is not part of any CheckboxGroup.

// Illustrating Checkbox

import java.awt.*;
import java.applet.*;
public class CheckboxApplet extends Applet
{
 public void init ()
 {
 Checkbox option = new Checkbox("Large pan Pizza");
 option.setState(true);
 add(option);
 }
}

The following methods

boolean getState () to read and change the state of a checkbox
void setState(boolean state)

String getLabel () to read and change the texual label of a check void
setLabel (String label)

CheckboxGroup getCheckboxGroup()
Void setCheckboxGroup(CheckboxGroup g)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 444

Controls & Events

The class java.awt.CheckboxGroup can be used to control the behaviour of a group
of checkboxes. Such a group only allows a single selection. Clicking on a different
check box in a group automatically unchecks the previous check box. Such mutually
exclusive check boxes are often called radio buttons.
The following methods return the currently selected check box and set a particular
check box as the current selection in a CheckboxGroup:

 CheckboxGroup getSelectedCheckbox()
 void setSelectedChekbox(Checkbox box)

CheckboxGroup object does not have a graphical representation, and its not a
subclass of Component. The CheckboxGroup is just a class to implement mutual
exclusion among a set of checkboxes.
// Illustration of Radio buttons

import java. awt.*;
import java.applet.*;
public class CheckboxGroupApplet extends Applet
{
 public void init ()
 {
CheckboxGroup pizzaGroup = new CheckboxGroup ();

CheckboxGroup cbLarge = new CheckboxGroup("Large Pan Pizza", pizzaGroup, false);

CheckboxGroup bMedium=new CheckboxGroup("MediumPan Pizza",true,pizzaGroup);

CheckboxGroup cbSmall = new CheckboxGroup("Small Pan Pizza", false);

CbSmall.setCheckboxGroup(pizzaGroup);

add(cbLarge);

add(cbMedium);

add(cbSmall);

}
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

445

Object Oriented Programming with C++ and Java

Choice

The Choice class implements a pop-up menu of choices. Only the current choice is
visible in a Choice component. The choice can be changed by popping up the list of
choices by clicking on the menu and selecting another item on the choice list.

Constructing a pop-up menu of choices involves the following steps:
Creating choice object using the single default constructor provided.
 Adding the items using the add() method.

void add(String item)
Int getItemCount Returns the number of items in the pop-up

menu
String getItem(int index Returns the item at a particular index in the pop-

up menu. Start index is 0.
Int getSelectedIndex() Returns the index of the currently selected item

in the pop-up menu
String getSelectedItem() Returns the index of the currently selected item

in the pop-up menu.
void select(int pos) Makes the item at the given position in the pop-

up menu the current choice.
void select(String str) Makes the item with the argument string in the

pop-up menu the current choice

The Choice class also defines methods for inserting and removing item from the
pop-up menus

// Illustrating choice
import java.awt.*;
import java.applet.*;
public class ChoiceApplet extends Applet
{
 public void init ()
 {
 Choice pizzaChoice = new Choice ();

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 446

Controls & Events

 pizzaChoice.add("Large Pan Pizza");
 pizzaChoice.add("Medium Pan Pizza");
 pizzaChoice.add("Small Pan Pizza");
 }
}

Label

A label is a component that displays a single line of read-only, non-selectable text. It
does not generate any special events. The label class defines three constructors

 Label ()
 Label (String text)
 Label (String text, int alignment)

The alignment of the label in a container can be specified by the following constants
of the Label class. The default alignment is left.

public static final int LEFT
 public static final int CENTER
 public static final int RIGHT

The Label class defines accessor methods for reading the current text and changing
the text in a label:

 String getText ()
 void setText(String text)

There are also accessor methods for reading the current alignment and setting a
particular alignment for a label:
 int getAlignment ()
 void setAlignment(int alignment)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

447

Object Oriented Programming with C++ and Java

Example demonstrates two Labels, one with default(left) alignment and another with
centered.

// Illustrating Labels

import java.awt.*;
import java.applet.*;
public class LabelApplet extends Applet
{
 public void init ()
 {
 setLayout(new GridLayout(2,1);
 add(new Label("A sticky label");
 add(new Label("One more sticky label", label.CENTER);
}
}

List

The List class implements a scrollable list of text items. Since the list is scrollable the
number of items that can be visible in the list box is defined as the number of rows in
the list. The list can be of course have any number of text items and a scroll bar
appears when necessary to scroll the list.
A List object can be created using one of the following constructors, with options for
specifying the number of rows and multiple selection mode

 List ()
 List (int rows)
 List (int rows, boolean multipleMode)

Constructing a list involves the following steps.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 448

Controls & Events

1. Creating a List object, optionally specifying the number of rows and multiple
selection mode.

2. Adding the items using the add() method. The items are strings.

a. void add(String item)
b. void add(String item, int index)

Various accessor methods are defined for scrollbar lists:

Int getRows () Returns the number of rows in the list
Boolean isMultipleMode() Returns true if multiple selections are allowed in

the list
Int getItemCount() Returns the number of items in the list
String getItem(int index) Returns the item at a particular index in the list
String [] getitems () Returns the items in the list
String getSelectedItem () Returns the selected item if one is selected,

otherwise returns the null value
String[] getSelectedItems() Returns the selected items if any, otherwise

returns the null value
int getSelectedIndex() Returns the index of the selected item if one is

selected, otherwise returns the value -1
void select(int index) Selects the item at a given index in the list
void select(String str) Selects the items that matches the argument

string in the list
void deselect(int index) Deselects the item at the given index in the list.

 The List class defines methods for changing, inserting and removing items.

 // Illustrating List
 import java.awt.*;
 import java.applet.*;
 public class ListApplet extends Applet
 {
 public void init ()
 {
 String [] fruit = {"Mango", "Pineapple","Bannana", "Pawpaw");
 List fruitList = new List(fruit.length -1, true);
 for(int i = 0; i<fruit.length; i++){
 fruitList.add(fruit[i]);
 }
 add(fruitList);
 }
 }

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

449

Object Oriented Programming with C++ and Java

 Scroll Bar

A document window in a text processor usually has two scroll bars. A vertical
scrollbar to scroll up and down. A horizontal scroll bar similarly scrolls the
document left and right. A scroll bar thus indicates the relative position of the visible
contents in relation to the whole document. This is one typical use of scroll bars. A
scroll bar can also be used as a controller to specify a value from a given interval.

 The Scroll bar provides two constants to indicate orientation

 public static final HORIZONTAL

public static final VERTICAL

 Three constructors provide various ways to create scroll bars:

 Scrollbar()
 Scrollbar(int orientation)
 Scrollbar(int orientation, int value, int visible, int minimum, int
 maximum)

The visible argument determines the visible width of the slider. The arguments
minimum and maximum specify the interval represented by the scroll bar.
The Scroll bars defines an assortment of accessor methods.
int getValues () Returns the current value of the scroll bar
void setValue(int newValue) Sets the value of the scroll bar to the

argument value
int getMinimum() Returns the minimum value of the scroll

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 450

Controls & Events

bar
void setMinimum(int minimum) Sets the minimum value for the scroll bar
int getMaximum() Returns the maximum value of the scroll

bar
void setMaximum(int maximum) Sets the maximum value for the scroll bar
int getVisibleAmount() Returns the visible amount of the scroll

bar
void setVisibleAmount(int
newAmount)

Sets the visible amount of the scroll bar
that is the range of values represented by
the width of the scroll bar's slider

int getUnitIncrement() Returns the unit increment for the scroll
bar

void setUnitIncrement(int v) Sets the unit increment for the scroll bar
int getBlockIncrement Gets the block increment for the scrollbar
void setBlockIncrement(int v) Sets the block increment for the scroll bar

// Illustrating Scroll bar

import java.awt.*;
import java.applet.*;
public class ScrollbarApplet extends Applet
{
 public void init()
 {
 Scrollbar bar = new Scrollbar();
 Scrollbar(Scrollbar.HORIZONTAL,0,10,-50,100);
 add(bar);
 }
}

unit decrement block decrement slider block decrement unit increment

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

451

Object Oriented Programming with C++ and Java

Text field & Text area

The class TextComponent provides the functionality for selecting and editing the
text. Its two subclasses TextField and TextArea inherit the functionality to
implement a single line of text or multiple lines of text respectively. The text in the
component can be read-only or editable.

The TextField class implements a single line of optionally editable text. The size of
the text field is measured in columns. Some initial text and a preferred size can be
specified when a text field is created.

 TextField()
 TextField(String text)
 TextField(int columns)
 TextField(String text, int columns)

// Illustrating TextField
import java.awt.*;
import java.applet.*;
public class TextFieldApplet extends Applet
{
 public void init ();
 {
 TextField entryField = new TextField(18);
 entryField.setFont(new Font("Serif",Font.PLAIN, 12);
 entryField.setText("Go ahead and type");
 add(entryField);
 }
}

The TextArea class implements multiple lines of optionally editable text. These lines
are separated by '\n'(newline)character. The size of the text area is measured in
columns and rows. When creating text areas, the intial text and the pereferred size
of the component can be specified.
Constructors:

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 452

Controls & Events

 TextArea()
 TextArea(String text)
 TextArea(int rows, int columns)
 TextArea(String text, int rows, int columns)
 TextArea(String text, int rows, int columns, int scrollbars)

Constants:

public static final int SCROLLBARS_BOTH
public static final int SCROLLBARS_VERTICAL_ONLY
public static final int SCROLLBARS_HORIZONTAL_ONLY
public static final int SCROLLBARS_NONE

 Both the TextField and TextArea provides the following methods

 int getColumns()
 void setColumns(int columns)

The text component class does not provide any public constructors and is therefore
uninstantiable.

// Illustrating TextArea
import java.awt.*;
import java.applet.*;
public class TextAreaApplet extends Applet
{
 public void init ()
 {
 TextArea display = new TextArea(10,6);
 display.setFont(new("Monospaced",Font.PLAIN, 12);
 display.setText("Mono\n123456\nBanana\n");
 display.setEditable(false);
 add(display);
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

453

Object Oriented Programming with C++ and Java

// illustrating Text Lines and Variable Pitch Fonts

import java.awt.*;
import java.applet.*;
public class TextAreaAppletTwo extends Applet
{
 public void init ()
 {
 TextArea display1 = new TextArea(4,6);
 display1.setFont(new("Monospaced",Font.PLAIN, 18);
 display1.setText("Mono\n123456\nBanana\n");

 TextArea display2 = new TextArea(4,6);
 display2.setFont(new("Monospaced",Font.PLAIN, 18);
 display2.setText("Mono\n123456\nBanana\n");

 TextArea display3 = new TextArea(4,6);
 display3.setFont(new("Monospaced",Font.PLAIN, 18);
 display3.setText("Mono\n123456\nBanana\n");

 add(display1);
 add(display2);

 add(display3);
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 454

Controls & Events

 29.3 Making Windows

Although creating applets is the most common use for Java’s AWT, it is possible to
create stand alone AWT based applications, too. To do this simply create an
instance of the window or windows you need inside main(). For example, the
following program creates a frame window that respond to mouse clicks and
keystrokes.

 / / Create an AWT based aplication.

 Import java.awt.*;
 Import java.awt.event.*;
 Import java.applet.*;

/ / Create a frame window.

public class Appwindow extends Frame {
 String Keymsg = * *;
 String mousemsg = * * ;
 int mouseX=30, mouseY=30;

 public Appwindow () {
 addKeyListener (new MyKeyAdapter (this) ;
 addMouseListener (new MyMouseAdapter (this);
 addWindowListener (new MywindowAdapter ());

}

 public void paint (Graphics g) {

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

455

Object Oriented Programming with C++ and Java

 g.drawString(keymsg,10,40);
 g.drawString (mouseG, mouseX,mouseY);

}

/ / Create the window.
Public static viod main (String args []); {
 AppWindow appwin = new Appwindow ();

Appwin.setSize (new Dimension (300,200));
Appwin.setTitle (“AnAWT-Based Appocation”);
Appwin.setVisible (true);

}
}

class MyKeyAdapter extends KeyAdapter {
 appWindowappWindow ;
 public MyKeyAdapter (AppWindow appWindow) {
this.appWindow = appWindow:
 }
 public void keyTyped (KeyEvent Ke) {
appWindow.keymsg + =key.get.KetChar ();
 appWindow.repaint ();
 };
}

class MyMouseAdapter extends MouseAdapter {
AppWindow appWindow;
 Public MyMouseAdapter (AppWindow appWindow) {
 This.appWindow = appWindow;

}

public void mousePressed (MouseEvent me) {
appWindow.mouseX = me.getX ();
appWindow,mouseY =me.getY ();
appWindow.mousemsg = “Mouse Down at” + appWinxdow.mouseX +
 “,” + appWindow.mouseY;
appWindow.repaint ();
 }
}

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 456

Controls & Events

class MyWindowsAdapter extends WindowAdapter {
public void windowClosing (WindowEvent we) {
System.exit (0);

 }
}

Once created a frame, window takes on a life of its own. Notice that main() ends
with the call to appwin.setVisble (true). However, the program keeps running until
you close the window. In essence, when creating a windowed application, you will
use main() to launch it top level window. After that, your program will function as
a GUI-based application not like the console-based programs used earlier.

29.4 Handling keyboard Events

Method Description Called with values

keyDown() Called if a key is pressed keyDown(Event e, int x)

keyUp() Called if a key is released keyUp(Event e, int x)

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of key events, which are identified by
these integer constants : KEY_PRESSED, KEY_RELEASSED ,and KEY_TYPED. The first two events are generated,
when any key is pressed or released. The last event occurs only when a character is generated.

There are many other integer constants that are defined by KeyEvent. For example,VK_0 through VK_9 and VK_A
through VK_Z define the ASCII equivalent of the nubers and letters.Here are some others:

VK_ENTER VK_ESCAPE VK_CANCEL VK_UP

VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN

VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL

The VK Constants specify vitrual key codes and are independent of any modifiers,such as control,shift ,or alt.

KeyEvent is a subclass of InputEvent and has these two constructors :

KeyEvent(Component src,int type,long when,int modifiers,int code)

KeyEvent(Component src,int type,long when,int modifiers,int code,char ch)

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

457

Object Oriented Programming with C++ and Java

Here, src is a reference to the component that generated the event. The type of the event is specified by type. The
system time at which the key was pressed is passed in when. The modifiers argument indicates which modifiers
were pressed when this key event occurred. The virtual key code, such as VK_UP,VK_A ,and so forth ,is passed in
code. The character equivalent (if one exists) is passed in ch.If no valid character exists, then ch contains
CHAR_UNDEFINED. For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods,but the most commonly used ones are getKeyChar(),which returns the
character thet was entered, and getKeyCode() ,which returns the key code.Their general forms are shown here:

Char getKeyChar()

Int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED. When a KEY_TYPED event
occurs, getKeyCode() returns VK_UNDEFINED.

29.5 Processing Mouse Events

Method Description Called with values

mouseDown() Called if the mouse button mouseDown(Event e,int x, in y)
 is down

mouseDrag() Called if the mouse while a mouseDrag(Event e, int x, int y)
 Button is pressed

mouseEnter() Called when the mouse enters mouseEnter(Event e, int x, int y)
 the component

mouseExit() Called when the mouse exits mouseExit(Event e, int x, int y)
 the component

mouseMove() Called if the mouse moves mouseMove(Event e, int x, int y)
 while no buttons are pressed

mouseUp() Called if the mouse button is mouseUp(Event e, int x, int y)
 up

The Action Event Class

An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a menu item is selected. The
ActionEvent class defines four integer constants that can be used to identify any modifiers associated with an action
event:

ALT_MASK,CTRL_MASK,META_MASK,and SHIFT_MASK.In addition,there is an integer
constant,ACTION_PERFORMED,which can be used to identify action events.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 458

Controls & Events

ActionEvent has these two constructors:

ActionEvent(Object src,int type,String cmd)

ActionEvent(Object src,int type,String cmd,int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is specified by Type, and its
command string is cmd. The argument modifiers indicates which modifiers keys(ALT, CTRL, META, and/or
SHIFT) were pressed when the event was generated.

You can obtain the command name for the invoking ActionEvent Object by using the getActionCommand()
method,shown here:

String getActionCommand()

For example,when a button is pressed, an action event is generated that has a command name equal to the label on
that button.

The getModifiers() method returns a value that indicates which modifier keys(ALT,CTRL,META,and/or SHIFT)
were pressed when the event was generated.Its form is shown here:

 Int getModifiers()

29.6 The Mouse Event Class

There are several types of mouse events. The MouseEvent class defines the
following integer contants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse

 MOUSE_DRAGGED The user dragged the mouse

 MOUSE_ENTERED The mouse entered a component

 MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

 MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

 Mouse Event is a subclass of InputEvent and has this constructor:

 MouseEvent(Component src,int type, long, when, int modifiers, int x, int y, int clicks
boolean triggersPopup)

 Here src is a reference to the competent that generated the event. The type of the
event is specified by type. The system time at which the mouse event occurred is
passed in when. The modifiers argument indicates which modifiers were pressed

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

459

Object Oriented Programming with C++ and Java

when a mouse event occurred. The coordinated of the mouse are passed in x and y.
The click count is passed in clicks. The triggersPopup flag indicated if this event
causes a pop-up menu to appear on this platform.

 The most commonly used methods in this class are getX () and get Y (). These

return the X and y corrdinates of the mouse when the event occurred. Their form
are shown here:

 Int get X ()
 Int get Y ()

 Alternatively, you can use the getPoint () method to obtain the coordinated of the
mouse . It is shown here:

 Point getPoint ()

 It returns a Point object that contains the X,Y coordinated in its integer members. X

and y. The translatePoint() method changes the location of the event . Its form is
shown here:

Void translatePoint int x,int y)

Here the arguments x and y are added to the coordinated of the event.

The getClikCount() method obtains the number of mouse clicks for this event. Its
signature is shown here:

 Int getClickCount ()

 The is PopupTrigger() methods tests if this event causes a pop-up menu to appear

on this platform. Its form is shown here:

 Bollean is PopupTrigger ().

 The package java.awt.event defines several types of events that are generated by
various user interface elements. The Most important event class are given in the
below table.

Event Class Description

ActionEvent Generated when a button is pressed, a list item is

 Double-clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 460

Controls & Events

ComponentEvent Generated when a component is hidden, moved,
 resized, o or becomes visible.

ContainerEvent Generated when a component is added to or
 removed from a container.

 FocusEvent Generated when a component gains or loses
 keyboard focus.

 InputEvent Abstract super class for all component input event
 classes

 ItemEvent Generated when a checkbox or list item is
 clicked;also occurs when a choice selection is made
 or a checkable menu item is selected or deselected.

 KeyEvent Generated when input is received from the
 keyboard.

 MouseEvent Generated when the mouse is dragged, moved,
 clicked, pressed, or released;also generated when
 the mouse enters or exits a component.

 TextEvent Generated when the value of a text area or text area
 or text field is changed.

 WindowEvent Generated when a window is acivated, closed,
 deacivated, deiconified, iconified,opened,or quit.

Table . Main Event Classes in java.awt.event

29.7 Canvas

A Canvas class provides the ability to construct generic GUI components. The class
does not have any default graphical representation, or any event handlers of its own.
It inherits these capabilities from its super class Component. The Canvas class is
usually subclassed to construct customized GUI components consisting of drawing
or images, and can handle user input events relating to mouse and keyboard actions.
Its paint() method is usually overridden to render graphics in the component

// Illustrating Canvas

import java.awt.*;

import java.applet.*;

public class CanvasApplet extends Applet

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

461

Object Oriented Programming with C++ and Java

{
 public void init()
 {
 DrawingRegion region = new DrawingRegion ();
 add(region);
 }

}
class DrawingRegion extends Canvas
{
 public DrawingRegion
 {
 setSize(150,150);
 }
 public void paint (Graphics g)
 {

 g.drawRect(0,0,149,149); //draw border around region

 g.drawstring("A 150 x 150 Canvas", 20,20); //draw string
 }

}

 The above code draws a rectangular region on a canvas.

29.8 Short Summary

 The class java.awt.CheckboxGroup can be used to control the behavior of a group
of checkboxes.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 462

Controls & Events

 The Choice class implements a pop-up menu of choices.

 A document window in a text processor usually has two scroll bars. A vertical
scrollbar to scroll up and down. A horizontal scroll bar similarly scrolls the
document let and right.

 There are three types of key events, which are identified by these integer
constants: KEY_PRESSED, KEY_RELEASSED, and KEY_TYPED.

 The Text Area class implements multiple lines of optionally editable text.

 A canvas class provides the ability to construct generic GUI components.

29.9 Brain Storm

1. How can we add the button control in applet?

2. What is difference between choice and checkbox controls?

3. How can we create a window?

4. What is difference between key_pressed and key_Releashed events?

5. What are events we used for Mouse and keyboard devices?

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

463

Object Oriented Programming with C++ and Java

Lecture - 30

Applet versus Application

Objectives

In this lecture you will learn the following

 About Features of Applet

 Difference between applet and application

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 464

Applet Versus Application

Lecture - 30

30.1 Snap Shot

30.2 Features of Applet

30.3 Difference between Applet and Application

30.4 Short Summary

30.5 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

465

Object Oriented Programming with C++ and Java

30.1 Snap Shot

Although Java is a general-purpose programming language suitable for a large
variety of tasks. An applet is a Java program that executes on a World Wide Web
page.

30.2 Introduction and Features of Applet

Applet Basics

All applets are subclasses of Applet. Thus all applets must import java applet.
Applets must also import java.awt. recall that AWT stands for the Abstract
Windows Toolkit. Since all applets run in a windows, it is necessary to include
support for that window. Applets are not executed by the console based java
runtime interpreter. Rather they are executed by either a Web browser or an applet
viewer. The figures shown in this chapter were created with the standard applet
viewer, called applet viewer, provided by the JDk. But you can use any applet
viewer or browser you like.

Execution of an applet does not begin at main (). Actually few applets even have
main () methods. Instead, execution of an applet us started and controlled with an
entirely different mechanism, which will be explained shortly. Output to your
applet’s window is not performed by Syste.out.println (). Rather, it is handled with
various AWT methods, such as drawstring() which outputs a string to a specified X
,Y location . input is also handled differently that in an application.

Once an applet has been compiled it is included in an HTML file using the APPLET
tag. The applet will be executed by a java enabled web browser when it encounters
the APPLET tag within the HTML file. To view and test an applet more conveniently,
simply include a comment at the head of your java source code file that contains the
APPLET tag. This way your code is documented with the necessary HTML
statements needed by you applet, and you can test the compiled applet by starting
the applet viewer with your java source code file specified as the target. Here is an
example of such a comment:

 /*
 <applet code=”MyApplet” width =200 height = 60>
 </applet>
*/
This comment contains an APPLET tag that will run an applet called MyApplet in a
window that is 200 pixel wide and 60 pixels high. Since the inclusion of an APPLET
command makes testing applets easier, all of the applets shown in this book will
contain the appropriate APPLET tag embedded in a comment.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 466

Applet Versus Application

Applet Fundamentals

All of the preceding examples in this book have been java application. However,
application constitute only one class of java programs. The other type of program is
the applet. As mentioned in Chapter 1, applets are small applications that are
accessed on an internet server, transported over the internet, automatically installed,
and run as part of a Web document. after an applet arrives on the client, it has
limited access to resources, so that it can produce an arbitrary multimedia user
interface and run complex computations without introducing the risk of ciruses or
branching data integrity.

Many of the issues connected with the creation and use of applets are found in part II
when the applet package is examined. However, the fundamentals connected to the
cretion of an applet are presented here, because applets not structured in the same
way as the programs that the have been used thus far.

Using Applet

Today, applets are being used to accomplish far more than demonstrative goals.
There are working examples of applets on Web sites throughout the Internet-a check
of the AltaVista search engine finds more than 4,200 Web pages that have applets
embedded on them.

The current uses of applets include the following:

o Tickertape-style news and sports headline updates
o Animated graphics
o Video games
o Student tests
o Image maps that respond to mouse movement
o Advanced text displays
o Database reports

Figure shows a noteworthy example of an applet: the Instant Ballpark program from
Instant Sports.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

467

Object Oriented Programming with C++ and Java

Instant Ballpark takes real-time data from live baseball games and updates its
display to reflect what's happening in the game. Players run the bases, the ball goes
to the place it was hit, and sound effects are used for strike calls, crowd noise, and
other elements. The program, which was unique enough to qualify for a U.S. patent,
is reminiscent of the old-time baseball tradition of presenting the play-by-play for
road games by moving metal figures on the side of a building. In addition to the live
coverage, Instant Ballpark can be used to review the play-by-play action of past
games.

The applet shows one of the advantages of a Web program over a Web page. With
HTML and some kind of gateway programming language such as Perl, a Web page
can offer textual updates to a game in progress. However, Instant Ballpark offers a
visual presentation of a live game in addition to text, and the applet can respond
immediately to user input. Java can be used to provide information to Web users in a
more compelling way, which is often the reason site providers are offering applets.

Viewing Applets

As you know, applets are displayed as a part of a Web page. A special HTML tag,
<APPLET>, is used to attach a Java applet to an HTML page. Running an applet
requires the use of a Web browser or other software that serves the function of a
browser, such as the applet viewer program that ships with the Java Developers Kit
from JavaSoft.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 468

Applet Versus Application

The browser acts as the operating system for applets-you cannot run an applet as a
standalone program in the same way you can run an executable file.

At the time of this writing, there are three widely available Web browsers that can
run Java applets:

• Netscape Navigator version 2.02 or higher
• Microsoft Internet Explorer 3.0
• JavaSoft HotJava 1.0 pre-beta 1

These programs load applets from a Web page and run them remotely on the Web
user's computer. This arrangement raises security issues that must be handled by the
Java language itself and by Java-enabled browsers.

30.3 Differences between Applets and Applications.

Traditionally, the word applet has come to mean any small application. In java, an
applet is any java program that is launched from a web document; that is, from an
HTML file. Java applications, on the other hand, are programs that run from a
command line, independent of a web browser. The size or complexity of a java
applet has no limit. In fact, java applets are in some ways more powerful than java
applications. However, with the internet, where communication speed is limited and
download times are long, most java applets are small by necessity.

The technical differences between applets and applications stem from the context in
which they run. A java application runs in the simplest possible environment-its only
input from the outside world is a list of command-line parameters. On the other
hand, a java applet receives a lot of information from the web browser. It needs to
know when it is initialized, when and where to draw itself in the browser window,
and when it is activated or deactivated. As a consequence of these two very different
execution environments, applets and applications have different minimum
requirements.

The decision to write a program as an applet versus an application depends on the
context of the program and its delivery mechanism. because java applets are always
presented in the context of a web browser’s graphical user interface(GUI), java
applications are perferred over applets when graphical displays are unnecessary. for
example, an HTTP server written in java needs no graphical display; it requries only
file and network access.

The convenience of web protocols for applet distribution makes applets the preferred
program type for Internet applications, although applications can easily be used to
perform many of the same tasks. with java, writing Internet-based software, either as
applets or applications, is extremely easy. non-networked systems and systems with
small amounts of memory are much more likely to be written as java applications
than as java applets.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

469

Object Oriented Programming with C++ and Java

Difference between Java applets and application

 Java Applet Java Application
User graphics Inherently graphical Optional
Memory
requirements

Java application
requirements plus web
browser requirements

Minimal java application
requirements

Distribution Linked via HTML and
transported via HTTP

Loaded from the file
system or by a custom
class loading process

Environmental
input

Browser client location and
size; parameters embedded
in the host HTML
document

command-line parameters

Method expected
by the virtual
Machine

init- initialization method
start-startup method stop
pause/ deactive method
destroy-termination
method paint-drawing
method

Main - startup method

Typical
applications

public-access order-entry
systems for the web, online
multimedia persentations,
web page animation

Network server,
multimedia kiosks,
developer tools, appliance
and consumer electronics
control and navigation.

You should consider one other major factor when deciding applet or application. If
you are using features of newer java versions, you need to wait until browsers
support the capabilities. With an application, you can provide the Java Runtime
Environment. However, within an applet, you can only use the capabilities a browser
offers. In an Internet environment, you can expect users to still be using older
browser versions, which do not support to be more control over software versions,
you can know what versions are available and develop accordingly. Also, you may
want to consider using Sun’s Java Plug in product which can automatically update
the Java version of browsers when a new version becomes available.

30.4 Summary

Java security is important because it makes exciting new things possible with very
little risk. Early security holes caused by implementation bugs are being closed, and
technology is being fielded that permits the strict security policy to be carefully and
selectively relaxed. Resources that can be used to destroy or steal data are protected,
and researchers are examining ways to prevent applets from using other resources to
cause annoyance or inconvenience.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 470

Applet Versus Application

Application developers can design their own security policies and supply parts of
the third layer of the Java security model to implement those policies in their
applications.

The Java security architecture is sound. Early weaknesses and bugs are not a
surprise, and the process that has exposed those flaws has also helped remove them.

30.5 Brain Storm

1. What is applet?

2. Explain the difference between Java applets and applications.

3. Explain the features of applet.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

471

Object Oriented Programming with C++ and Java

Lecture - 31

Applet Life Cycle

Objectives

In this lecture you will learn the following

 Applet Life cycle

 Features of Applet

 Package java.applet

 Applet Capabilities

 Security and Restrictions

 Applet implementation

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 472

Applet Life Cycle

Lecture - 31

31.1 Snap Shot

31.2 Applet Life Cycle

31.3 Package java.applet

31.4 Features of Applet

31.5 Applet Capabilities

31.6 Security and Restriction

31.7 Implementation of Applet

31.8 Short Summary

31.9 Brain Storm

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

473

Object Oriented Programming with C++ and Java

31.1 Snap Shot

In this session we deal about applet life cycle, Package java.applet, Features of applet,
capability, Restriction and Implementation of applet.

31.2 Applet Life Cycle

All but the most trivial applets override a set of methods that provides the basic mechanism by which the

browser or applet viewer interfaces to the applet and controls its execution. Four of these method – init() ,

start(), stop(), and destroy() – are defined by Applet. Another , paint(), is defined by the AWT Component

Class . Default implementations for all of these methods are provided. Applets do not need to override those

methods they do not use. However, only very simple applets will not need to define all of them. These five

methods can be assembled into the skeleton shown here:

// An Applet Skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code = “AppletSkel “ width = 300 height =100>
</applet>
*/
public class AppletSkel extends Applet{
//Called first.
Public void init(){
// initialization
}
/* Called second, after init() . Also called whenever the applet is restarted .*/
public void start(){
//start or resume execution
}
//Called when the applet is stopped.
Public void stop(){
//suspends execution
}
/* Called when applet is terminated. This is the last method executed .*/
public void destroy () {
// perform shutdown activites
}
//Called when an applet’s window must be restored.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 474

Applet Life Cycle

Public void paint (Graphics g){
//redisplay contents of window

}
}
Although this skeleton does not do anything , it can be compiled and run.
When run, it generates the following window when viewed with an applet
viewer.

Applet Initialization and Termination

It is important to understand the order in which the various methods shown in the
skeleton are called . When an applet begins, the AWT calls the following methods , in
this sequence:

1. init()
2. start()
3. paint()

When an applet is terminated , the following sequence of method calls takes place.

1. stop()
2. destroy()

Let’s look more closely at these methods.

init()

The init() method is the first method to be called . This is where you should initialize
variables. This method is called only once during the run time of your applet.

start()

The start() method is called after init() . It is also called to restart an applet after it has
been stopped. Whereas init() is called once- the first time an applet is loaded – start()
is called each time an applet’s HTML document is displayed onscreen. So, if a user
leaves a web page and comes back, the applet resumes execution at start().’

paint()

The paint() method is called each time your applet’s output must be redrawn. This
situation can occur for several reasons. For example , the window in which the applet
is running may be overwritten by another window and then uncovered. Or the

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

475

Object Oriented Programming with C++ and Java

applet window may be minimized and then restored. Paint() is also called when the
applet begins execution. Whatever the cause, whenever the applet must redraw its
output, paint() is called. The paint() method has one parameter of type Graphics.
This parameter will contain the graphics context, which describes the graphics
environment in which the applet is running. This context is used whenever output to
the applet is required.

stop()

The stop() method is called when a web browser leaves the HTML document
containing the applet – when it goes to another page, for example. When stop() is
called, the applet is probably Running . You should use stop() to suspend threads
that don’t need to run when the applet is not visible. You can restart them when
start() is called if the user returns to the page.

destroy()

The destroy() method is called when the environment determines that your applet
needs to be removed completely from memory. At this point, you should free up any
resources the applet may be using. The stop() method is always called before
destroy().

Overriding update()

In some situations, your applet may need to override another method defined by the
AWT , called update(). This method is called when your applet has requested that a
portion of its window be redrawn. The default version of update() first fills an applet
with the default background color and then calls paint(). If you fill the background
using a different color in paint(), the user will experience a flash of the default
background each time update() is called- that is , whenever the window is repainted.
One way to avoid this problem is to override the update() method so that it performs
all necessary display activities. Then have paint() simply call update(). Thus, for
some applications, the applet skeleton will override paint() and update(), as shown
here.

public void update(Graphics g){
//redisplay your window, here.
}
public void paint(Graphics g){
update(g);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 476

Applet Life Cycle

}
For the examples in this book, we will override update() only when needed.

31.3 Features in Applet

Java 1.1 has been out since early 1997 . If you are moving to Java 1.2 from java 1.0 several
features will appear new and different. Here is summary of the new features of java 1.1

Internationalization:

New classes and methods have been added to make writing programs for international users
even easier. This includes support for non –English characters and text sorting, as well as a
variety of time and date standards.

Security:

Several enhancements, including digital signing, have been incorporated into a new and
improved security manager. Also security for native method calls has been enhanced.

Performance enhancements:

A new AWT event model and complete rewrite of the native code for AWT has boosted GUI
performance dramatically. Also much of the compiler and interpreter coded has been
rewritten.

Network and I/O enhancements:

New classes provide extra network a functionality, as well as greater customization, buttered
input and output.

Object reflection.:

A special API for getting privileged information about a specific object has been added. This
is especially useful for debuggers and other VM- enhancement programs.

The JDBC and javaBenas capabilities previously mentioned are also new to java 1.1

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

477

Object Oriented Programming with C++ and Java

Java 1.2 adds even more enhancements some improving capabilities added inn Java with
other completely new. The following summarizer the features new to Java.

Enhancements to security, javaBeans, reflection, and performance:

Numerous java a packages received enhancements in java 1.2 The security architecture
incorporates policy-based access control to enhance permission management. Java Beans
adds drag-and-drop support, while reflection includes the ability to bypass security,
specifically when using object reflection. Also, the performance of various pieces of the java
libraries was improved, for instance, faster memory allocation, reduced memory usage for
loaded classes, and just in time compilers.

Java Foundation Classes :

The java Foundation Classes (JFC) encompass a broad range of enhancements. There is now
support for assertive technologies with Accessibility API, a java 2-D API enhanced graphics
and imaging, and Swing for a new set of GUI a component, in +-addition to the AWT
components.

Collections:

The Collection API makes working with groups of objects much easier. Prior to java 1.2 you
basically used the earlier Vector and hashtable classes, as well as the enumeration interface.
Here, you can work with things like balanced trees, circular linked lists, and simplified array
sorting.

In addition to these changes, a whole host of changes to methods, classes and packages have
provided extra functionality. These changes are documented throughout this book.

31. 4 Package java.applet

A big reason for java’s runaway success is that it’s a highly efficient and easy-to-learn
language for distributed software components. java applets are nothing more or less
than distributed software components. even so, the standard class framework
contains little that explicitly deals with those instrumental applets.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 478

Applet Life Cycle

The java.applet package looks very barren compared to the other packages. its sole
contents are one class and three interfaces. Class java.applet.Applet is the main
repositry for methods supporting applet functionality.

The methods it makes available can be grouped into the following categories.

 Applet initialization, restarting, and freezing.

 Embedded HTML applet parameter support

 High-level image loading

 High-level audio loading and playing for applets and applications

 Origins querying (getDocumentBase() and getCodeBase())

 Simple status displaying(showStatus(String))

31. 5 Applet Capability

Much of the power of the World Wide Web stems from its platform dependence that is it
presents information in a way that can be viewed on almost every type of machine and
operating system. It doesn’t matter whether you use a PC, Macintosh, or Unix workstation
the Web is architecture neutral which is why so many people have access to it.

Unfortunately, being so widely accepted also has its drawbacks. It is difficult to
extend the Web protocol without leaving many Web users behind.. For instance Web
content developers are constantly trying to extend the capability of the Web by
integrating new types of media, like 3 d worlds and animation, but these developers
then face the prospect of excluding people without those viewing capabilities, which
limits their audience.

The existing Web standards permit seamless integration of graphics with text. Other
forms of media ,a such as sound, video, and animation are accessible via the Web but
they ar enot smoothly connected with normal Web content. For example it is easy to
create a link to a sound file in a HTML document the Web browser will either play
the sound or download it to a file when a the user clicks on the link. However, there
is no browser independent way to create background music for a document or give
audio feedback when a button is pressed. This is just one of the many creative
limitations that have frustrated Web developers over the past few years.

Until now, the solution to this extensibility problem has been to create a proprietary
protocol, and then try to seal the solution to as many users on as many platforms as
possible. This is a hard sell and has had limited success. As a result, Web pages tend
to cater to the lowest common denominator therefore, the content has not reached its
full potential in many instances.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

479

Object Oriented Programming with C++ and Java

A good example of this is Adobe’s Portable Document Format . This is a cross
platform solution for creating robust documents and distributing them on the
internet. PDF provides support for documents far richer than simple HTML
allowing groups like the internal Revenue Service to ship tax forms across the Web.
Adobe provides the viewer for free but tries to make money on the tools that create
PDF document. PDF’s main limited is that you need to download a special programs
from Adobe to view the files.

31.6 Security and Restriction

Java applets are programs that run on a Web user's machine. Anything that can
execute code is a potential security risk because of the damaging things that can
occur. Viruses can damage a computer's file system and reproduce onto other disks.
Even Microsoft Word has been a security risk because of Word Basic-an executable
programming language that can be used in conjunction with Word documents.

Security is one of the primary concerns of Java's developers, and they have
implemented safeguards at several levels. Some of these safeguards affect the
language as a whole: The removal of pointers, the verification of bytecodes, and
other language issues have been discussed elsewhere in this book.

Some of Java's functionality is not possible when programming applets because of
security concerns. The following safeguards are in place:

• Applets cannot read or write files on the Web user's disk. If information must be
saved to disk during an applet's execution, the storage of information must be
done on the disk from which the Web page is served.

• Applets cannot make a network connection to a computer other than the one
from which the Web page is served.

• Pop-up windows opened by applets are identified clearly as Java windows. A
Java cup icon and text such as Untrusted Applet Window appear in the window.
These elements are added to prevent a window opened by Java from pretending
to be something else, such as a Windows dialog box requesting a user's name and
password.

• Applets cannot use dynamic or shared libraries from any other programming
language. Java can make use of programs written in languages such as Visual
C++ by using a native statement from within Java. However, applets cannot
make use of this feature because there's no way to adequately verify the security
of the non-Java code being executed.

• Applets cannot run any programs on the Web user's system.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 480

Applet Life Cycle

As you can see, Java applets are more limited in functionality than standalone Java
applications. The loss is a tradeoff for the security that must be in place for the
language to run remotely on users' computers.

Many users and applet developers understand the need for security, but wish it
weren't so strict and inflexible. They say that users should be able to disable or
weaken Java's security if they want to. To a large degree, they're right, and you can
expect Java applications to have more flexibility in the future.

Java security isn't all or nothing. The application can grant or deny access to applets
based on a wide variety of criteria: the name of the applet, where it came from, the
type of resource it's trying to access, even the particular resource. An application can
choose to let applets read some files, but not others, for example.

Flexible, selective schemes involve a lot of extra complexity, and with complexity
comes the potential for mistakes. In addition, there are subtle, difficult questions
surrounding flexible security schemes. For example, employees may have very
different ideas about acceptable security than their employer does-how much control
should be given to the users and how much to the site security administrator? Faced
with numerous tough questions like that, the people behind Java decided to be
careful at first. They are starting with an extremely conservative security model,
which will become less rigid as time goes on. This is probably a good strategy
because a big security scare early in Java's lifetime would have really dampened
enthusiasm for the language.

The other problem is that there isn't yet a good criterion for deciding which applets
should be trusted and which should not. The best solution is probably to trust
applets based on who wrote them, but that's difficult to verify.

What Are the Dangers?

To really understand the Java security model-why it's important, how it works, and
how to work with it-you should have a good idea about the kinds of security attacks
that are possible and which system resources can be used to mount such attacks. Java
takes care to protect these resources from untrusted code. If you are using a Java
application that allows you to configure applet security, or if you are writing a Java
application that loads classes from the Net, it helps to understand just what doors
you might be opening when you give an applet access to a particular resource.

The Kinds of Attacks

There are several different kinds of security attacks that can be mounted on a
computer system. Some of them are surprising to people who are new to computer
security issues, but they are very real and can be devastating under the right
circumstances. Table 1 lists some common types of attacks.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

481

Object Oriented Programming with C++ and Java

 Type of Attack Description
Theft of
information

Nearly every computer contains some information that
the owner or primary user of the machine would like
to keep private.

Destruction of
information

In addition to data that is private, most of the data on
typical computers has some value, and losing it would
be costly.

Theft of
resources

Computers contain more than just data. They have
valuable, finite resources that cost money: disk space
and a CPU are the best examples. A Java applet on a
Web page could quietly begin doing some extensive
computation in the background, periodically sending
intermediate results back to a central server, thus
stealing some of your CPU cycles to perform part of
someone else's large project. This would slow down
your machine, wasting another valuable resource: your
time.

Denial of service Similar to theft of resources, denial-of-service attacks
involve using as much as possible of a finite resource,
not because the attacker really needs the resource, but
simply to prevent someone else from being able to use
it. Some computers (like mail servers) are extremely
important to the day-to-day operations of businesses,
and attackers can cause a lot of damage simply by
keeping those machines so busy with worthless tasks
that they can't do their real jobs.

Masquerade By pretending to be from another source, a malicious
program can persuade a user to reveal valuable
information voluntarily.

Deception If a malicious program were successful in interposing
itself between the application and some important data
source, the attacker could alter data-or substitute
completely different data-before giving it to the
application or the user. The user would take the data
and act on it, assuming it to be valid.

Table 1. Some common types of attacks against computers.

In addition to these common attacks, Java applets can try another kind of attack.
Because applets are fetched to your machine and run locally, they can try to assume
your identity and do things while pretending to be you. For example, machines
behind corporate firewalls often trust each other more than they trust machines on

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 482

Applet Life Cycle

the wider Internet, so once an applet has started running on your machine behind
the firewall, it may try to access other machines, exploiting that trust. Another
example is mail forging: once on your machine, an applet may attempt to send
threatening or offensive mail which appears to be from you. Of course, Internet mail
can be forged from other machines besides your own, but doing it from your own
machine makes it a little more convincing.

How Does Java Security Work?

Now that you understand why security features are important and what kinds of
threats exist, it's time to learn how Java's security features work and how they protect
against those threats.

The Java security model is composed of three layers, each dependent on those
beneath it. The following sections cover each of the layers, describing how the
security systems works.

The Three Layers of Security

The first line of defense against untrusted programs in a Java application is a part of
the basic design of the language: Java is a safe language. When programming
language theorists use the word safety, they aren't talking about protection against
malicious programs. Rather, they mean protection against incorrect programs. Java
achieves this in several ways:

o Array references are checked at runtime to ensure that they are within the
bounds of the array. This check prevents incorrect programs from running off
the end of an array into storage that doesn't belong to the program or that
contains values of the wrong type.

o Casts are carefully controlled so that they can't be used to violate the language's
rules, and implicit type conversions are kept to a minimum.

o Memory management is automatic. This arrangement prevents "memory leaks"
(when unused storage is never reclaimed) and "dangling pointers" (when valid
storage is freed prematurely).

o The language does not allow programmers to manipulate pointers directly
(although they are used extensively behind the scenes). This feature prevents
many invalid uses of pointers, some of which could be used to circumvent the
preceding restrictions.

All these qualities make Java a "safe" language. Put another way, they ensure that
code written in Java actually does what it appears to do, or fails. The surprising
things that can happen in C (such as continuing to read data past the end of an array

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

483

Object Oriented Programming with C++ and Java

as though it were valid) cannot happen. In a safe language, the behavior of a
particular program with a particular input should be entirely predictable-no
surprises.

The second layer of Java security involves careful verification of Java class files-
including the virtual machine bytecodes that represent the compiled versions of
methods-as they are loaded into the virtual machine. This verification ensures that a
garbled class file won't cause an error within the Java interpreter itself, but it also
ensures that the basic language safety is not violated. The rules about proper
language behavior that were written into the language specification are good, but it's
also important to make sure that those rules aren't broken. Checking everything in
the compiler isn't good enough, because it's possible for someone to write a
completely new compiler that omits those checks. For that reason, the Java library
carefully checks and verifies the bytecodes of every class that is loaded into the
virtual machine to make sure that those bytecodes obey the rules. Some of the rules,
such as bounds checking on references to array elements, are actually implemented
in the virtual machine, so no real checks are necessary. Other rules, however, must be
checked carefully. One particularly important rule that is verified rigorously is that
objects must be true to their type-an object that is created as a particular type must
never be able to masquerade as an object of some incompatible type. Otherwise,
there would be a serious loophole through which explicit security checks could be
bypassed.

This verification process doesn't mean that Java code can't be compiled to native
machine code. As long as the validation is performed on the bytecodes first, a native
compiled version of a class is still secure. "Just-in-time" (JIT) compilers run within the
Java virtual machine, compiling bytecodes to native code as classes are loaded, just
after the bytecode verification stage. This compilation step doesn't usually take much
time, and the resulting code runs much faster.

The third and final layer of the Java security model is the implementation of the Java
class library. Classes in the library provide Java applications with their only means of
access to sensitive system resources, such as files and network connections. Those
classes are written so that they always perform security checks before granting
access.

This third layer is the portion of the security system that an application can control-
not by changing the library implementation, but by supplying the objects that
actually make the decisions about whether to grant each request for access. Those
objects-the security manager and the class loaders-are the core of an application's
security policy, and you'll read more about them (including how to implement them)
a little later in this chapter.

Protected System Resources

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 484

Applet Life Cycle

The first two layers of the Java security model are primarily concerned with
protecting the security model itself. It's the third layer, the library implementation, in
which explicit measures are taken to protect against the kinds of attacks listed in
Table 2. Those resources fall into six categories, as listed in Table 2.

Resource Description
Local file access The capability to read or write files and directories. These

capabilities can be used to steal or destroy information, as
well as to deny service by destroying important system files
or writing a huge file that fills the remaining space on your
disk. Applets can also use local file access to deceive you by
writing an official-looking file somewhere that you will find
later and believe to be trustworthy.

System access The capability to execute programs on the local machine,
plus access to system properties. These capabilities can be
used for theft or destruction of information or denial of
service in much the same way that direct file access can: by
executing commands that manipulate your files.
Additionally, system properties may contain information
that you view as private or that can help an attacker break
into your system using other means.

Network access The capability to create network connections, both actively
(by connecting to some machine) and passively (by
listening and accepting incoming connections). Applets that
actively create connections may be trying to usurp the
user's identity, exploiting the trust that other machines
place in him or her. Applets that try to listen for incoming
connections may be taking over the job of a system service
(such as a Web server).

Thread
manipulation

The capability to start, stop, suspend, resume, or destroy
threads and thread groups, as well as other sorts of thread
manipulation such as adjusting priorities, setting names,
and changing the daemon status. Without restrictions on
such capabilities, applets can destroy work by shutting
down or disabling other components of the applications
within which they run, or do so to other applets. Rogue
applets can also mount denial of service attacks by raising
their own priority while lowering the priorities of other
threads (including the system threads that may be able to
control the errant applets).

Factory object
creation

The capability to create factory objects that find and load
extension classes from the network or other sources. An
untrustworthy factory object can garble user data,

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

485

Object Oriented Programming with C++ and Java

transparently substitute incoming data from a completely
different source, or even steal outgoing data-without the
user of the application realizing what's happening. See
"Further Reading," later in this chapter, for pointers to more
information about factory objects.

Window
creation

The capability to create new top-level windows. New top-
level windows may appear to be under the control of a
local, trusted application rather than an applet, and they
can prompt unwary users for important information such
as passwords. The Java security system permits
applications to forbid applets from creating new windows,
and it also permits tagging applet-owned windows with a
special warning for users.

Table 2. Resources checked by Java security.

The third layer of the security model isn't just concerned with protecting system
resources; it also provides protection for some Java runtime resources, to protect the
integrity of the security model itself.

Example: Reading a File

Let's look at an example to see how the security model works in practice. This
example concentrates on what happens in the third layer, for two reasons: The lower
two layers sometimes deal with some rather esoteric issues of type theory, and they
are not within the programmer's control. The top layer, on the other hand, is
relatively straightforward and can be controlled by Java application programmers.

Suppose that the Snark applet has been loaded onto your system and wants to read
one of your files-say, diary.doc. To open the file for reading, Snark must use one of
the core Java classes-in particular, FileInputStream or RandomAccessFile in the
java.io package. Because those core classes are a part of the security model, before
they allow reading from that particular file, they ask the system security manager
whether it's okay. Those two classes make the request in their constructors;
FileInputStream uses code like this:

// Gain access to the system security manager.
SecurityManager security = System.getSecurityManager();
if (security != null) {
 // See if reading is allowed. If not, the security manager will
 // throw a SecurityException. The variable "name" is a String
 // containing the file name.
 security.checkRead(name);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 486

Applet Life Cycle

}
// If there is no security manager, anything goes!

The security manager is found using one of the static methods in the System class. If
there is no security manager, everything is allowed; if there is a security manager, it
is queried to see whether this access is permitted. If everything is fine, the
SecurityManager.checkRead() method returns; otherwise, it throws a
SecurityException. Because this code appears in a constructor, and because the
exception isn't caught, the constructor never completes, and the FileInputStream
object can't be created.

The SecurityManager class, an abstract class from which all application security
managers are derived, contains several native methods that can be used to inspect
the current state of the Java virtual machine. In particular, the execution stack-the
methods in the process of executing when the security manager is queried-can be
examined in detail. The security manager can thus tell which classes are involved in
the current request, and it can decide whether all those classes can be trusted with
the resource being requested.

In the Snark example, the security manager examines the execution stack and sees
several classes, including Snark. That means something to us, but it probably doesn't
mean a lot to the security manager. In particular, the security manager has probably
never heard of a class called Snark, and presumably it doesn't even know that Snark
is an applet. Yet that's the really important piece of information: if one of the classes
currently on the execution stack is part of an applet or some other untrusted,
dynamically loaded program, then granting the request could be dangerous.

At this point, the security manager gets some help. For each class on the execution
stack, it can determine which class loader is responsible for that class. Class loaders
are special objects that load Java bytecode files into the virtual machine. One of their
responsibilities is to keep track of where each class came from and other information
that can be relevant to the application security policy. When the security manager
consults Snark's class loader, the security manager learns (among other things) that
Snark was loaded from the network. At last, the security manager knows enough to
decide that Snark's request should be rejected.

An Applet's View of Java Security

Applets and other untrusted (or partially trusted) classes, such as "servlets" in Java-
based Web servers, or protocol handlers and content type handlers in HotJava, run
within the confines of the application security policy. Such "unprivileged" classes are

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

487

Object Oriented Programming with C++ and Java

the kind that most Java programmers will be writing, so it's important to understand
what the Java security facilities look like from the point of view of ordinary code.

Security violations are signaled when the security manager throws a
SecurityException. It is certainly possible to catch that SecurityException and ignore
it, or try a different strategy, so an attempt to access a secured resource doesn't have
to mean the end of your applet. By trying different things and catching the exception,
applets can build a picture of what they are and are not allowed to do. It's even
possible to call the security manager's access checking methods directly, so that you
can find out whether a certain resource is accessible before actually attempting to
access it.

31.7 Implementing Applet

Java applet source code is written in the same way as java application source code
with a text editor. The difference is that java applets do not have a main method.
Instead, they have several other methods that are called by the VM when requested
by the browser. Here is the source code for the simple FilledBox applet:

 import java.awt.*;

import java.applet.Applet;
 /* filled box displays a filled, colored box in the browser window */
 public class FilledBox extends Applet {

 color b;

 public void init()
 {
 String s;
 s= getParameter(“color”);

b=Color.gray;
if (s != null)
{
if(s.equals(“red”)) b=Color.red;
if(s.equals(“white”)) b=Color.white;
if(s.equals(“blue”))b=Color.blue;
}
}
public void paint(Graphics g) {
g.setColor(b);

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 488

Applet Life Cycle

g.fillRect(0,0,size().width, size().height);
}
}

It’s a little more complicated than the java application example, but that is because it
does more. you will recall that a main method is required by all java applications; it
is conspicuously absent in this applet. In fact, java applets do not have any required
methods at all. However, there are five methods that the VM may call when
requested by the web browser

public void init() initializes the applet. Called only once.

public void start() Called when the browser is ready to start executing the initialized
applet. Can be called multiple times if user keeps leaving and returning to the web
page. also called when browser deiconified.

public void stop() Called when the browser wishes to stop executing the applet.
Called whenever the user leaves the web page. also called when browser iconified.

public void destroy() Called when the browser clears the applet out of memory.

public void paint(Graphics g) Called whenever the browser needs to redraw the
applet

If the applet does not implement any of these methods, the applet will have no
functionality for the specific method not implemented. In the example, init and paint
are implemented. The init function obtains the desired box color from a parameter in
the host document. The paint method draws the filled box in the browser window.
 Save this java applet source as FilledBox. java

using Javac

The java compiler works the same on applets as it does on java applications
 javac FilledBox.java

Here are a few tips that may help you get start. First, applet classes must always be
declared public or they will not get compiled. Also, remember that java is case
sensitive FilledBox java is not the same as filledBox.Java and will not be compiled.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

489

Object Oriented Programming with C++ and Java

If the java code is acceptable to the compiler, they only message you will see is about
a deprecated API:

 note: FilledBox. java uses a deprecated API. recompile with
 “-deprecation” for details.
 1 warning.
for now, ignore the warning. As long as there were no error messages, the file
FilledBox. class will be created. If there were error messages, you need to go back
and fix your code. there are many different types of error messages that the compiler
may generate when given a source file. the simplest to fix are syntax errors, such as a
missing semicolon or closing brace. other messages will highlight incorrect use of
variable types, invalid expressions, or violation access restrictions. Getting your
source code to compile is only the first part of the debugging process; error free
compilation does not guarantee that your program will do what you want. But don’t
worry about debugging just yet this example is simple enough that is should run
without any problems.

Before you can run your applet, your must create an HTML document to host it.

Creating and HTML File

Now that you know a little about HTML it is easy to create a simple HTML file to
host your applet
<HTML>
 < HEAD>
<TITLE >Sample HTML Document With Filled Box </TITLE>
</HEAD>
<BODY>
<H1> FilledBox Demo </H1>
<P>
<APPLET CODE =”FilledBox.class” WIDTH =50 HEIGHT =50>
<PARAM NAME =color VALUE= “blue”>
</APPLET>
</BODY>
</HTML>
you can create this file by simply typing it into a text editor. Save the file as Filled
Box.html. HTML files can be named anything you like, although it is common
practice to name them after the applets they host.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 490

Applet Life Cycle

Using appletviewer

The appletviewer utility is used to display the applet as it would be seen by the
browser without displaying any of the HTML document itself. In the case of
FilledBox.html, appletviewer will display a filled box in its own window:
 appletviewer FilledBox.html

For comparison you can open the file FilledBox.html using a Java-enabled Web
browser. Both the applet and the text are displayed.

If there is more than one applet in a page, appletviewer will open a separate window
for each applet a Web browser will show them in their respective locations within
the same Web page. One rather nice feature of appletviewer is that it can load
classes from across the network, not just from files. Just give appletviewer the URL
of the HTML document containing one or more applets, and it will load the applets
as if they were on your local disk. Note, however, that the securityManager for the
appletviewer may expose your system to greater risks from network loaded applets
than would a Web browser like Netscape Navigator.

Appletviewer makes it possible to distribute and run java applets without the aid of
a Web browser, so the choice between writing applets versus applications becomes
less critical. Most applets are easy to convert into applications and vice versa. The
key to this convertibility is to avoid placing a lot of code directly in the main, init,
start, stop and destroy methods, and use called to generic methods instead.

31. 8 Short Summary

Java's security model is possibly the least understood aspect of the Java system.
Because it's unusual for a language environment to have security facilities, some
people have been bothered by the danger; at the same time, because the security
restrictions prevent some useful things as well as harmful things, some people have
wondered whether security is really necessary.

Java security is important because it makes exciting new things possible with very
little risk. Early security holes caused by implementation bugs are being closed, and
technology is being fielded that permits the strict security policy to be carefully and
selectively relaxed. Resources that can be used to destroy or steal data are protected,
and researchers are examining ways to prevent applets from using other resources to
cause annoyance or inconvenience.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University

491

Object Oriented Programming with C++ and Java

Application developers can design their own security policies and supply parts of
the third layer of the Java security model to implement those policies in their
applications.

The Java security architecture is sound. Early weaknesses and bugs are not a
surprise, and the process that has exposed those flaws has also helped remove
them.

31.9 Brain Storm

1. What do you mean by a secured data?
2. Why Java is called highly secured Language?
3. What are the layers of security?
4. List some of the resources that are checked by the Java Security.
5. Name some common attacks to the system.

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 492

	TABLE OF CONTENTS

	Lecture 1. Introduction to Programming Languages
	Lecture 2. Introduction to OOP
	Lecture 3. Introduction to Java
	Lecture 4. Variables, Operators & Data types
	Lecture 5. Functions, Arguments & Overloading
	Lecture 6. Classes & Objects
	Lecture 7. Unions, Nested Classes, Constructors & Destracters
	Lecture 8. Inheritance
	Lecture 9. Polymorphism
	Lecture 10. Java Architecture
	Lecture 11. Elements of Java
	Lecture 12. Classes & Objects
	Lecture 13. Inheritance in Java
	Lecture 14. Polymorphism in Java
	Lecture 15. Interface in Java Inner Classes
	Lecture 16. Garbage Collection
	Lecture 17. Packages & Class Libraries
	Lecture 18. Built-in Classes
	Lecture 19. Exception Handling
	Lecture 20. IO Stream
	Lecture 21. Applets & Applications
	Lecture 22. Multithreading & Multitasking
	Lecture 23. Working with Threads
	Lecture 24. Thread States & Priorities
	Lecture 25. Synchronization
	Lecture 26. AWT GUI Components
	Lecture 27. Components
	Lecture 28. EventListener
	Lecture 29. Controls & Events
	Lecture 30. Applet versus Application
	Lecture 31.pdf

